Top

flavio.classes module

Base classes for flavio

"""Base classes for `flavio`"""


import numpy as np
from .config import config
from collections import OrderedDict, defaultdict
import copy
import flavio
from flavio._parse_errors import constraints_from_string, \
    convolve_distributions, dict2dist
from flavio.statistics.probability import string_to_class
import warnings
import yaml
import inspect
import urllib.parse
import re
import pkgutil


class NamedInstanceMetaclass(type):
    # this is just needed to implement the getitem method on NamedInstanceClass
    # to allow the syntax MyClass['instancename'] as shorthand for
    # MyClass.get_instance('instancename'); same for
    # del MyClass['instancename'] instead of MyClass.del_instance('instancename')
    def __getitem__(cls, item):
        return cls.get_instance(item)

    def __delitem__(cls, item):
        return cls.del_instance(item)


class NamedInstanceClass(object, metaclass=NamedInstanceMetaclass):
    """Base class for classes that have named instances that can be accessed
    by their name.

    Parameters
    ----------
     - name: string

    Methods
    -------
     - del_instance(name)
         Delete an instance
     - get_instance(name)
         Get an instance
     - set_description(description)
         Set the description
    """

    def __init__(self, name):
        if not hasattr(self.__class__, 'instances'):
            self.__class__.instances = OrderedDict()
        self.__class__.instances[name] = self
        self.name = name
        self.description = ''

    @classmethod
    def get_instance(cls, name):
        return cls.instances[name]

    @classmethod
    def del_instance(cls, name):
        del cls.instances[name]

    @classmethod
    def clear_all(cls):
        """Delete all instances."""
        cls.instances = OrderedDict()

    @classmethod
    def find(cls, regex):
        """Find all instance names matching the regular expression `regex`."""
        rc = re.compile(regex)
        return list(filter(rc.search, cls.instances))

    def set_description(self, description):
        self.description = description


class Parameter(NamedInstanceClass):
    """This class holds parameters (e.g. masses and lifetimes). It requires a
    name string and also allows to set a LaTeX name and description as
    attributes. Note that numerical values for the Parameters are not attributes
    of the Parameter class.

    Parameters
    ----------
     - name: string

    Attributes
    ----------
     - tex: string
     - description: string
    """

    def __init__(self, name):
        super().__init__(name)
        self.tex = ''

    def __repr__(self):
        return "Parameter('{}')".format(self.name)

    def _repr_markdown_(self):
        md = "### Parameter `{}`\n\n".format(self.name)
        if self.tex:
            md += "Parameter: {}\n\n".format(self.tex)
        if self.description:
            md += "Description: {}\n\n".format(self.description)
        return md


class Constraints(object):
    """Constraints are collections of probability distributions associated
    to objects like parameters or measurements. This is the base class of
    ParameterConstraints (that holds the numerical values and uncertainties
    of all the parameters) and Measurements (that holds the numerical values
    and uncertainties of all the experimental measurements.)

    Since this class is not meant for direct use, see these child classes for
    documentation.
    """

    def __init__(self):
            # Here we have two data structures. _constraints has the form
            # [ (<constraint1>, [parameter1, parameter2, ...]), (<constraint2>, ...) ]
            # where the <constraint>s are instances of ProbabilityDistribution
            # and the parameters string names, while _parameters has the form
            # { parameter1: (num1, <constraint1>)} where num1 is 0 for a
            # univariate constraint and otherwise gives the position of
            # parameter1 in the multivariate vector.
            # In summary, having this list and dictionary allow a bijective mapping between
            # constraints and parameters.
            # Note that one constraint can apply to multiple parameters (e.g.
            # in case of correlated uncertainties), but a parameter can only
            # have a single constraint (changed in v0.16!).
        self._constraints = []
        self._parameters = OrderedDict()

    @property
    def all_parameters(self):
        """Returns a list of all parameters/observables constrained."""
        return list(self._parameters.keys())

    def add_constraint(self, parameters, constraint):
        """Set the constraint on one or several parameters/observables.

        `constraint` must be an instance of a child of ProbabilityDistribution.

        Note that if there already exists a constraint, it will be removed."""
        for num, parameter in enumerate(parameters):
            # remove constraint if there is one
            if parameter in self._parameters:
                self.remove_constraint(parameter)
        # populate the dictionaries defined in __init__
            self._parameters[parameter] = (num, constraint)
        self._constraints.append((constraint, parameters))

    def set_constraint(self, parameter, constraint_string=None,
                                        constraint_dict=None):
        r"""Set the constraint on a parameter/observable by specifying a string
        or a dictionary. If several constraints (e.g. several types of
        uncertainty) are given, the total constraint will be the convolution
        of the individual distributions. Existing constraints will be removed.

        Arguments:

        - parameter: parameter string (or tuple)
        - constraint_string: string specifying the constraint that can be e.g.
          of the form `'1.55(3)(1)'` or `'4.0±0.1'`.
        - constraint_dict: dictionary or list of several dictionaries of the
          form `{'distribution': 'distribution_name', 'arg1': val1, ...}`, where
          'distribution_name' is a string name associated to each probability
          distribution (see `flavio.statistics.probability.class_from_string`)
          and `'arg1'`, `val1` are argument/value pairs of the arguments of
          the distribution class's constructor (e.g.`central_value`,
          `standard_deviation` for a normal distribution).

        `constraint_string` and `constraint_dict` must not be present
        simultaneously.
        """
        if constraint_string is not None and constraint_dict is not None:
            raise ValueError("constraint_string and constraint_dict cannot"
                             " be used at the same time.")
        if constraint_string is not None:
            pds = constraints_from_string(constraint_string)
        elif constraint_dict is not None:
            pds = dict2dist(constraint_dict)
        else:
            raise TypeError("Either constraint_string or constraint_dict have"
                            " to be specified.")
        combined_pd = convolve_distributions(pds)
        self.add_constraint([parameter], combined_pd)

    def remove_constraint(self, parameter):
        """Remove existing constraint on a parameter."""
        self._parameters.pop(parameter, None)

    def remove_constraints(self, parameter):
        warnings.warn("This function was renamed to `remove_constraint` "
                      "in v0.16 and will be removed in the future.",
                      DeprecationWarning)
        self.remove_constraint(parameter)

    def get_central(self, parameter):
        """Get the central value of a parameter"""
        if parameter not in self._parameters.keys():
            raise ValueError('No constraints applied to parameter/observable ' + parameter)
        else:
            num, constraint = self._parameters[parameter]
            cv = constraint.central_value
            try:
                cv = float(cv)
            except (TypeError, ValueError):
                # return the num-th entry of the central value vector
                return cv[num]
            else:
                if num == 0:
                    return cv
                else:
                    raise ValueError("Something went wrong when getting the central value of {}".format(parameter))

    def get_central_all(self):
        """Get central values of all constrained parameters."""
        return {parameter: self.get_central(parameter) for parameter in self._parameters.keys()}

    def get_random_all(self, size=None):
        """Get random values for all constrained parameters where they are
        distributed according to the probability distribution applied.

        If `size` is not None, the dictionary values will be arrays with length
        `size` rather than numbers."""
        # first, generate random values for every single one of the constraints
        random_constraints = {constraint: constraint.get_random(size=size)
                              for constraint, _ in self._constraints}
        random_dict = {}
        # now, iterate over the parameters
        for parameter, constraints in self._parameters.items():
            num, constraint = constraints
            carr = random_constraints[constraint]
            if size is None and num == 0 and np.isscalar(carr):
                random_dict[parameter] = carr
            elif size is None and num == 0 and carr.shape == tuple():
                random_dict[parameter] = carr
            elif size is None:
                random_dict[parameter] = carr[num]
            elif carr.shape == (size,) and num == 0:
                random_dict[parameter] = carr
            elif carr.ndim == 2 and carr.shape[0] == size:
                random_dict[parameter] = carr[:, num]
            else:
                raise ValueError("Unexpected error in get_random_all")
        return random_dict

    def get_1d_errors(self, N=1000):
        warnings.warn("This function was renamed to `get_1d_errors_random` "
                      "in v0.16 and will be removed in the future. ",
                      DeprecationWarning)
        self.get_1d_errors_random(N)

    def get_1d_errors_random(self, N=1000):
        """Get the Gaussian standard deviation for every parameter/observable
        obtained by generating N random values."""
        random_dict_list = [self.get_random_all() for i in range(N)]
        interval_dict = {}
        for k in random_dict_list[0].keys():
            arr = np.array([r[k] for r in random_dict_list])
            interval_dict[k] = np.std(arr)
        return interval_dict

    def get_1d_errors_rightleft(self):
        r"""Get the left and right error for every parameter/observable
        defined such that it contains 68% probability on each side of the
        central value."""
        errors_left = [constraint.error_left for constraint, _ in self._constraints]
        errors_right = [constraint.error_right for constraint, _ in self._constraints]
        error_dict = {}
        # now, iterate over the parameters
        for parameter, constraints in self._parameters.items():
            num, constraint = constraints
            idx = ([constraint for constraint, _ in self._constraints]).index(constraint)
            error_dict[parameter] = (np.ravel([errors_right[idx]])[num],
                                     np.ravel([errors_left[idx]])[num])
        return error_dict

    def get_logprobability_single(self, parameter, value, delta=False):
        """Return a dictionary with the logarithm of the probability for each
        constraint/probability distribution for a given value of a
        single parameter.
        """
        num, constraint = self._parameters[parameter]
        parameters = OrderedDict(self._constraints)[constraint]
        if len(parameters) == 1:
            if not delta:
                return constraint.logpdf(value)
            else:
                return constraint.delta_logpdf(value)
        else:
            # for multivariate distributions
            exclude = tuple(i for i, p in enumerate(parameters)
                            if p != parameter)
            if not delta:
                return constraint.logpdf([value], exclude=exclude)
            else:
                return constraint.delta_logpdf([value], exclude=exclude)

    def get_logprobability_all(self, par_dict, exclude_parameters=[], delta=False):
        """Return a dictionary with the logarithm of the probability for each
        constraint/probability distribution.

        Inputs
        ------
        - par_dict
          A dictionary of the form {parameter: value, ...} where parameter
          is a string and value a float.
        - exclude_parameters (optional)
          An iterable of strings (default: empty) that specifies parameters
          that should be ignored. Univariate constraints on this parameter
          will be skipped, while for multivariate normally distributed
          constraints, the parameter will be removed from the covariance.
        """
        prob_dict = {}
        for constraint, parameters in self._constraints:
            # list of constrained parameters except the excluded ones
            p_cons = [p for p in parameters
                      if (p not in exclude_parameters
                      and (parameters.index(p), constraint) == self._parameters.get(p, None))]
            x = [par_dict[p] for p in p_cons]
            if not x:
                # nothing to constrain
                continue
            if len(parameters) == 1:
                # 1D constraints should have a scalar, not a length-1 array
                if not delta:
                    prob_dict[constraint] = constraint.logpdf(x[0])
                else:
                    prob_dict[constraint] = constraint.delta_logpdf(x[0])
            else:
                # for multivariate distributions
                if len(x) == len(parameters):
                    # no parameter has been excluded
                    exclude = None
                else:
                    exclude = tuple(i for i, p in enumerate(parameters)
                                    if p not in p_cons)
                if not delta:
                    prob_dict[constraint] = constraint.logpdf(x, exclude=exclude)
                else:
                    prob_dict[constraint] = constraint.delta_logpdf(x, exclude=exclude)
        return prob_dict

    def copy(self):
        # this is to have a .copy() method like for a dictionary
        return copy.deepcopy(self)

    def get_yaml(self, *args, **kwargs):
        """Get a YAML string representation of all constraints.

        The optional parameter `pname` allows to customize the name of the key
        containing the parameter list of each constraint (e.g. 'parameters',
        'observables').
        """
        return yaml.dump(self.get_yaml_dict(*args, **kwargs))

    def get_yaml_dict(self, pname='parameters'):
        """Get an ordered dictionary representation of all constraints that can
        be dumped as YAML string.

        The optional parameter `pname` allows to customize the name of the key
        containing the parameter list of each constraint (e.g. 'parameters',
        'observables').
        """
        data = []
        for constraint, parameters in self._constraints:
            d = OrderedDict()
            d[pname] = [list(p) if isinstance(p, tuple) else p for p in parameters]
            d['values'] = constraint.get_dict(distribution=True,
                                              iterate=True, arraytolist=True)
            data.append(d)
        args = inspect.signature(self.__class__).parameters.keys()
        meta = {k: v for k, v in self.__dict__.items()
                if k[0] != '_' and v != '' and k not in args}
        if not args and not meta:
            return data
        else:
            datameta = OrderedDict()
            if args:
                datameta['arguments'] = {arg: self.__dict__[arg] for arg in args}
            if meta:
                datameta['metadata'] = meta
            datameta['constraints'] = data
            return datameta

    @classmethod
    def from_yaml(cls, stream, *args, **kwargs):
        """Class method: load constraint from a YAML string or stream."""
        data = yaml.safe_load(stream)
        return cls.from_yaml_dict(data, *args, **kwargs)

    @classmethod
    def from_yaml_dict(cls, data, pname='parameters', instance=None, *args, **kwargs):
        """Class method: load constraint from a dictionary or list of dicts.

        If it is a dictionary, it should have the form:

        ```{
        'metadata': {...},  # optional, do set attributes of the instance
        'arguments': {...},  # optional, to specify keyword arguments for instantiation,
        'constraints': [...],  # required, the list of constraints
        }

        Alternatively, the list of constraints can be directly given.
        This list should have elements in one of the two possible forms:

        1. Dictionary as returned by `Probability.get_dict`:
        ```{
        pname: [...],  # required, list of constrained parameters
        'values': {
            'distribution': '...',  # required, string identifying ProbabilityDistribution, e.g. 'normal'
            '...': '...',  # required, any arguments for the instantiation of the ProbabilityDistribution
            }
        }
        ```

        2. String representing one or several (to be convolved) constraints:
        ```{
        'my_parameter': '1.0 ± 0.2 ± 0.1 e-3'
        }
        """
        if isinstance(data, dict):
            constraints = data['constraints']
            meta = data.get('metadata', {})
            arguments = data['arguments']
            kwargs.update(arguments)
            inst = instance or cls(*args, **kwargs)
            for m in meta:
                inst.__dict__[m] = meta[m]
        else:
            inst = instance or cls(*args, **kwargs)
            constraints = data.copy()
        for c in constraints:
            if pname not in c:
                if 'values' not in c and len(c) == 1:
                    # this means we probably have a constraint of the
                    # form parameter: constraint_string
                    for k, v in c.items():  # this loop runs only once
                        inst.set_constraint(k, v)
                        break  # just to be sure
                    continue
                else:
                    # in this case something is clearly wrong. Mabye the
                    # wrong "pname" was used.
                    raise ValueError('Key ' + pname + ' not found. '
                                     'Please check the `pname` argument.')
            else:
                parameters = [tuple(p) if isinstance(p, list) else p for p in c[pname]]
                pds = dict2dist(c['values'])
                combined_pd = convolve_distributions(pds)
                inst.add_constraint(parameters, combined_pd)
        return inst


class ParameterConstraints(Constraints):
    """Trivial subclass of `Constraints` that is meant for constraints on
    theory parameters represented by instances of the `Parameter` class.
    """

    def __init__(self):
        super().__init__()

    def read_default(self):
        """Reset the instance and read the default parameters. Data is read
        - from 'data/parameters_metadata.yml'
        - from 'data/parameters_uncorrelated.yml'
        - from 'data/parameters_correlated.yml'
        - from the default PDG data file
        - for B->V form factors
        - for B->P form factors
        - for Lambdab->Lambda form factors
        """
        # import functions to read parameters
        from flavio.parameters import (
            _read_yaml_object_metadata,
            _read_yaml_object_values,
            _read_yaml_object_values_correlated,
            read_pdg
        )

        # reset the instance
        self.__init__()

        # Read the parameter metadata from the default YAML data file
        _read_yaml_object_metadata(pkgutil.get_data('flavio', 'data/parameters_metadata.yml'), self)

        # Read the uncorrelated parameter values from the default YAML data file
        _read_yaml_object_values(pkgutil.get_data('flavio', 'data/parameters_uncorrelated.yml'), self)

        # Read the correlated parameter values from the default YAML data file
        _read_yaml_object_values_correlated(pkgutil.get_data('flavio', 'data/parameters_correlated.yml'), self)

        # Read the parameters from the default PDG data file
        read_pdg(2018, self)

        # Read default parameters for B->V form factors
        flavio.physics.bdecays.formfactors.b_v.bsz_parameters.bsz_load('v2', 'LCSR', ('B->omega', 'B->rho'), self)
        flavio.physics.bdecays.formfactors.b_v.bsz_parameters.bsz_load('v2', 'LCSR-Lattice', ('B->K*', 'Bs->phi', 'Bs->K*'), self)

        # Read default parameters for B->P form factors
        flavio.physics.bdecays.formfactors.b_p.bsz_parameters.gkvd_load('v1', 'LCSR-Lattice', ('B->K', 'B->pi'), self)

        # Read default parameters for Lambdab->Lambda form factors
        flavio.physics.bdecays.formfactors.lambdab_12.lattice_parameters.lattice_load_ho(self)


class WilsonCoefficientPriors(Constraints):
    """
    """

    def __init__(self):
        super().__init__()


def tree():
    """Tree data structure.

    See https://gist.github.com/hrldcpr/2012250"""
    return defaultdict(tree)


def dicts(t):
    """Turn tree into nested dict"""
    return {k: dicts(t[k]) for k in t}


class Observable(NamedInstanceClass):
    """An Observable is something that can be measured experimentally and
    predicted theoretically."""

    def __init__(self, name, arguments=None):
        super().__init__(name)
        if not hasattr(self.__class__, 'taxonomy'):
            self.__class__.taxonomy = tree()
        self.arguments = arguments
        self.prediction = None
        self.tex = ''

    def __repr__(self):
        return "Observable('{}', arguments={})".format(self.name, self.arguments)

    def _repr_markdown_(self):
        md = "### Observable `{}`\n\n".format(self.name)
        if self.tex:
            md += "Observable: {}\n\n".format(self.tex)
        if self.description:
            md += "Description: {}\n\n".format(self.description)
        if self.arguments is not None:
            md += "Arguments: "
            md += ','.join(["`{}`".format(a) for a in self.arguments])
            md += "\n\n"
        if self.prediction is not None:
            f = self.prediction.function
            from IPython.lib import pretty
            md += "Theory prediction: `{}`".format(pretty.pretty(f))
        return md

    @classmethod
    def argument_format(cls, obs, format='tuple'):
        """Class method: takes as input an observable name and numerical values
        for the arguements (if any) and returns as output the same in a specific
        form as specified by `format`: 'tuple' (default), 'list', or 'dict'.

        Example inputs:
        - ('dBR/dq2(B0->Denu)', 1)
        - {'name': 'dBR/dq2(B0->Denu)', 'q2': 1}

        Output:
        tuple: ('dBR/dq2(B0->Denu)', 1)
        list: ('dBR/dq2(B0->Denu)', 1)
        dict: {'name': 'dBR/dq2(B0->Denu)', 'q2': 1}

        For a string input for observables that don't have arguments:
        - 'eps_K'

        Output:
        tuple: 'eps_K'
        list: 'eps_K'
        dict: {'name': 'eps_K'}
        """
        if isinstance(obs, str):
            if cls[obs].arguments is not None:
                raise ValueError("Arguments missing for {}".format(obs))
            if format == 'dict':
                return {'name': obs}
            else:
                return obs
        elif isinstance(obs, (tuple, list)):
            args = cls[obs[0]].arguments
            if args is None or len(args) != len(obs) - 1:
                raise ValueError("Wrong number of arguments for {}".format(obs[0]))
            t = tuple(obs)
            d = {'name': obs[0]}
            for i, a in enumerate(args):
                d[a] = obs[i + 1]
        elif isinstance(obs, dict):
            args = cls[obs['name']].arguments
            if args is None:
                t = obs['name']
            else:
                t = tuple([obs['name']] + [obs[a] for a in args])
            d = obs
        if format == 'tuple':
            return t
        elif format == 'list':
            return list(t)
        elif format == 'dict':
            return d

    def set_prediction(self, prediction):
        self.prediction = prediction

    def prediction_central(self, constraints_obj, wc_obj, *args, **kwargs):
        return self.prediction.get_central(constraints_obj, wc_obj, *args, **kwargs)

    def prediction_par(self, par_dict, wc_obj, *args, **kwargs):
        return self.prediction.get_par(par_dict, wc_obj, *args, **kwargs)

    def add_taxonomy(self, taxonomy_string):
        """Add a metadata taxonomy for the observable.

        `taxonomy_string` has to be a string of the form
        'Category :: Subcategory :: Subsubcategory'
        etc. LaTeX code is allowed. One observable can also have multiple
        taxonomies (e.g. 'Animal :: Cat' and 'Pet :: Favourite Pet')"""
        taxonomy_list = taxonomy_string.split(' :: ') + [self.name]
        t = self.__class__.taxonomy
        for node in taxonomy_list:
            t = t[node]

    @classmethod
    def taxonomy_dict(cls):
        """Return the hierarchical metadata taxonomy as a nested dictionary."""
        return dicts(cls.taxonomy)

    @classmethod
    def from_function(cls, name, observables, function):
        """Instantiate an observable object and the corresponding Prediction
        object for an observable that is defined as a mathematical function
        of two or more existing observables with existing predictions.

        Parameters:
        -----------

        - name: string name of the new observable
        - observables: list of string names of the observables to be combined
        - function: function of the observables. The number of arguments must
          match the number of observables

        Example:
        --------

        For two existing observables 'my_obs_1' and 'my_obs_2', a new observable
        that is defined as the difference between the two can be defined as

        ```
        Observable.from_function('my_obs_1_2_diff',
                                 ['my_obs_1', 'my_obs_2'],
                                 lambda x, y: x - y)
        ```
        """
        for observable in observables:
            try:
                Observable[observable]
            except KeyError:
                raise ValueError("The observable " + observable + " does not exist")
            assert Observable[observable].arguments == Observable[observables[0]].arguments, \
                "Only observables depending on the same arguments can be combined"
            assert Observable[observable].prediction is not None, \
                "The observable {} does not have a prediction yet".format(observable)
        obs_obj = cls(name, arguments=Observable[observables[0]].arguments)
        pfcts = [Observable[observable].prediction.function
                 for observable in observables]
        def pfct(*args, **kwargs):
            return function(*[f(*args, **kwargs) for f in pfcts])
        Prediction(name, pfct)
        return obs_obj

    def get_measurements(self):
        r"""Return the names of measurements that constrain the observable."""
        ms = []
        for name, m in Measurement.instances.items():
            if self.name in m.all_parameters:
                ms.append(name)
            else:
                for obs in m.all_parameters:
                    if isinstance(obs, tuple):
                        if obs[0] == self.name:
                            ms.append(name)
                            break
        return ms

    def theory_citations(self, *args, **kwargs):
        """Return a set of theory papers (in the form of INSPIRE texkeys) to
        cite for the theory prediction for an observable.

        Arguments are passed to the observable and are necessary,
        depending on the observable (e.g. $q^2$-dependent observables).
        """
        with flavio.citations.collect() as citations:
            flavio.sm_prediction(self.name, *args, **kwargs)
        return citations.set



class AuxiliaryQuantity(NamedInstanceClass):
    """An auxiliary quantity is something that can be computed theoretically but
    not measured directly, e.g. some sub-contribution to an amplitude or a form
    factor."""

    def __init__(self, name, arguments=None):
        super().__init__(name)
        self.arguments = arguments

    def get_implementation(self):
        try:
            implementation_name = config['implementation'][self.name]
        except KeyError:
            raise KeyError("No implementation specified for auxiliary quantity " + self.name)
        return Implementation[implementation_name]

    def prediction_central(self, constraints_obj, wc_obj, *args, **kwargs):
        implementation = self.get_implementation()
        return implementation.get_central(constraints_obj, wc_obj, *args, **kwargs)

    def prediction(self, par_dict, wc_obj, *args, **kwargs):
        implementation = self.get_implementation()
        return implementation.get(par_dict, wc_obj, *args, **kwargs)


class Prediction(object):
    """A prediction is the theoretical prediction for an observable."""

    def __init__(self, observable, function):
        try:
            Observable[observable]
        except KeyError:
            raise ValueError("The observable " + observable + " does not exist")
        self.observable = observable
        self.function = function
        self.observable_obj = Observable[observable]
        self.observable_obj.set_prediction(self)

    def get_central(self, constraints_obj, wc_obj, *args, **kwargs):
        par_dict = constraints_obj.get_central_all()
        fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
        return self.function(fwc_obj, par_dict, *args, **kwargs)

    def get_par(self, par_dict, wc_obj, *args, **kwargs):
        fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
        return self.function(fwc_obj, par_dict, *args, **kwargs)


class Implementation(NamedInstanceClass):
    """An implementation is the theoretical prediction for an auxiliary
    quantity."""

    @classmethod
    def show_all(cls):
        all_dict = {}
        for name in cls.instances:
            inst = cls[name]
            quant = inst.quantity
            descr = inst.description
            all_dict[quant] = {name: descr}
        return all_dict

    def __init__(self, name, quantity, function):
        super().__init__(name)
        try:
            AuxiliaryQuantity[quantity]
        except KeyError:
            raise ValueError("The quantity " + quantity + " does not exist")
        self.quantity = quantity
        self.function = function
        self.quantity_obj = AuxiliaryQuantity[quantity]

    def get_central(self, constraints_obj, wc_obj, *args, **kwargs):
        par_dict = constraints_obj.get_central_all()
        fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
        return self.function(fwc_obj, par_dict, *args, **kwargs)

    def get_random(self, constraints_obj, wc_obj, *args, **kwargs):
        par_dict = constraints_obj.get_random_all()
        fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
        return self.function(fwc_obj, par_dict, *args, **kwargs)

    def get(self, par_dict, wc_obj, *args, **kwargs):
        fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
        return self.function(fwc_obj, par_dict, *args, **kwargs)


class Measurement(Constraints, NamedInstanceClass):
    """A (experimental) measurement associates one (or several) probability
    distributions to one (or several) observables. If it contains several
    observables, these can (but do not have to) be correlated.

    To instantiate the class, call Measurement(name) with a string uniquely
    describing the measurement (e.g. 'CMS Bs->mumu 2012').

    To add a constraint (= central vaue(s) and uncertainty(s)), use

    `add_constraint(observables, constraint)`

    where `constraint` is an instance of a descendant of
    ProbabilityDistribution and `observables` is a list of either
     - a string observable name in the case of observables without arguments
     - or a tuple `(name, x_1, ..., x_n)`, where the `x_i` are float values for
       the arguments, of an observable with `n` arguments.
    """

    def __init__(self, name):
        NamedInstanceClass.__init__(self, name)
        Constraints.__init__(self)
        self.inspire = ''
        self.experiment = ''
        self.url = ''

    def __repr__(self):
        return "Measurement('{}')".format(self.name)

    def _repr_markdown_(self):
        md = "### Measurement `{}`\n\n".format(self.name)
        if self.experiment:
            md += "Experiment: {}\n\n".format(self.experiment)
        if self.inspire:
            md += ("[Inspire](http://inspirehep.net/search?&p=texkey+{})\n\n"
                   .format(urllib.parse.quote(self.inspire)))
        if self.url:
            md += "URL: <{}>\n\n".format(self.url)
        if self.description:
            md += "Description: {}\n\n".format(self.description)
        if self.all_parameters:
            md += "Measured observables:\n\n"
            for obs in self.all_parameters:
                if isinstance(obs, tuple):
                    name = obs[0]
                    args = obs[1:]
                    argnames = Observable[name].arguments
                    md += "- {}".format(Observable[name].tex)
                    for i, arg in enumerate(args):
                        md += ", `{}` = {}".format(argnames[i], arg)
                    md += "\n"
                else:
                    md += "- {}\n".format(Observable[obs].tex)
        return md

Module variables

var config

Functions

def dicts(

t)

Turn tree into nested dict

def dicts(t):
    """Turn tree into nested dict"""
    return {k: dicts(t[k]) for k in t}

def tree(

)

Tree data structure.

See https://gist.github.com/hrldcpr/2012250

def tree():
    """Tree data structure.

    See https://gist.github.com/hrldcpr/2012250"""
    return defaultdict(tree)

Classes

class AuxiliaryQuantity

An auxiliary quantity is something that can be computed theoretically but not measured directly, e.g. some sub-contribution to an amplitude or a form factor.

class AuxiliaryQuantity(NamedInstanceClass):
    """An auxiliary quantity is something that can be computed theoretically but
    not measured directly, e.g. some sub-contribution to an amplitude or a form
    factor."""

    def __init__(self, name, arguments=None):
        super().__init__(name)
        self.arguments = arguments

    def get_implementation(self):
        try:
            implementation_name = config['implementation'][self.name]
        except KeyError:
            raise KeyError("No implementation specified for auxiliary quantity " + self.name)
        return Implementation[implementation_name]

    def prediction_central(self, constraints_obj, wc_obj, *args, **kwargs):
        implementation = self.get_implementation()
        return implementation.get_central(constraints_obj, wc_obj, *args, **kwargs)

    def prediction(self, par_dict, wc_obj, *args, **kwargs):
        implementation = self.get_implementation()
        return implementation.get(par_dict, wc_obj, *args, **kwargs)

Ancestors (in MRO)

Class variables

var instances

Static methods

def __init__(

self, name, arguments=None)

Initialize self. See help(type(self)) for accurate signature.

def __init__(self, name, arguments=None):
    super().__init__(name)
    self.arguments = arguments

def get_implementation(

self)

def get_implementation(self):
    try:
        implementation_name = config['implementation'][self.name]
    except KeyError:
        raise KeyError("No implementation specified for auxiliary quantity " + self.name)
    return Implementation[implementation_name]

def prediction(

self, par_dict, wc_obj, *args, **kwargs)

def prediction(self, par_dict, wc_obj, *args, **kwargs):
    implementation = self.get_implementation()
    return implementation.get(par_dict, wc_obj, *args, **kwargs)

def prediction_central(

self, constraints_obj, wc_obj, *args, **kwargs)

def prediction_central(self, constraints_obj, wc_obj, *args, **kwargs):
    implementation = self.get_implementation()
    return implementation.get_central(constraints_obj, wc_obj, *args, **kwargs)

def set_description(

self, description)

def set_description(self, description):
    self.description = description

Instance variables

var arguments

Methods

def clear_all(

cls)

Delete all instances.

@classmethod
def clear_all(cls):
    """Delete all instances."""
    cls.instances = OrderedDict()

def del_instance(

cls, name)

@classmethod
def del_instance(cls, name):
    del cls.instances[name]

def find(

cls, regex)

Find all instance names matching the regular expression regex.

@classmethod
def find(cls, regex):
    """Find all instance names matching the regular expression `regex`."""
    rc = re.compile(regex)
    return list(filter(rc.search, cls.instances))

def get_instance(

cls, name)

@classmethod
def get_instance(cls, name):
    return cls.instances[name]

class Constraints

Constraints are collections of probability distributions associated to objects like parameters or measurements. This is the base class of ParameterConstraints (that holds the numerical values and uncertainties of all the parameters) and Measurements (that holds the numerical values and uncertainties of all the experimental measurements.)

Since this class is not meant for direct use, see these child classes for documentation.

class Constraints(object):
    """Constraints are collections of probability distributions associated
    to objects like parameters or measurements. This is the base class of
    ParameterConstraints (that holds the numerical values and uncertainties
    of all the parameters) and Measurements (that holds the numerical values
    and uncertainties of all the experimental measurements.)

    Since this class is not meant for direct use, see these child classes for
    documentation.
    """

    def __init__(self):
            # Here we have two data structures. _constraints has the form
            # [ (<constraint1>, [parameter1, parameter2, ...]), (<constraint2>, ...) ]
            # where the <constraint>s are instances of ProbabilityDistribution
            # and the parameters string names, while _parameters has the form
            # { parameter1: (num1, <constraint1>)} where num1 is 0 for a
            # univariate constraint and otherwise gives the position of
            # parameter1 in the multivariate vector.
            # In summary, having this list and dictionary allow a bijective mapping between
            # constraints and parameters.
            # Note that one constraint can apply to multiple parameters (e.g.
            # in case of correlated uncertainties), but a parameter can only
            # have a single constraint (changed in v0.16!).
        self._constraints = []
        self._parameters = OrderedDict()

    @property
    def all_parameters(self):
        """Returns a list of all parameters/observables constrained."""
        return list(self._parameters.keys())

    def add_constraint(self, parameters, constraint):
        """Set the constraint on one or several parameters/observables.

        `constraint` must be an instance of a child of ProbabilityDistribution.

        Note that if there already exists a constraint, it will be removed."""
        for num, parameter in enumerate(parameters):
            # remove constraint if there is one
            if parameter in self._parameters:
                self.remove_constraint(parameter)
        # populate the dictionaries defined in __init__
            self._parameters[parameter] = (num, constraint)
        self._constraints.append((constraint, parameters))

    def set_constraint(self, parameter, constraint_string=None,
                                        constraint_dict=None):
        r"""Set the constraint on a parameter/observable by specifying a string
        or a dictionary. If several constraints (e.g. several types of
        uncertainty) are given, the total constraint will be the convolution
        of the individual distributions. Existing constraints will be removed.

        Arguments:

        - parameter: parameter string (or tuple)
        - constraint_string: string specifying the constraint that can be e.g.
          of the form `'1.55(3)(1)'` or `'4.0±0.1'`.
        - constraint_dict: dictionary or list of several dictionaries of the
          form `{'distribution': 'distribution_name', 'arg1': val1, ...}`, where
          'distribution_name' is a string name associated to each probability
          distribution (see `flavio.statistics.probability.class_from_string`)
          and `'arg1'`, `val1` are argument/value pairs of the arguments of
          the distribution class's constructor (e.g.`central_value`,
          `standard_deviation` for a normal distribution).

        `constraint_string` and `constraint_dict` must not be present
        simultaneously.
        """
        if constraint_string is not None and constraint_dict is not None:
            raise ValueError("constraint_string and constraint_dict cannot"
                             " be used at the same time.")
        if constraint_string is not None:
            pds = constraints_from_string(constraint_string)
        elif constraint_dict is not None:
            pds = dict2dist(constraint_dict)
        else:
            raise TypeError("Either constraint_string or constraint_dict have"
                            " to be specified.")
        combined_pd = convolve_distributions(pds)
        self.add_constraint([parameter], combined_pd)

    def remove_constraint(self, parameter):
        """Remove existing constraint on a parameter."""
        self._parameters.pop(parameter, None)

    def remove_constraints(self, parameter):
        warnings.warn("This function was renamed to `remove_constraint` "
                      "in v0.16 and will be removed in the future.",
                      DeprecationWarning)
        self.remove_constraint(parameter)

    def get_central(self, parameter):
        """Get the central value of a parameter"""
        if parameter not in self._parameters.keys():
            raise ValueError('No constraints applied to parameter/observable ' + parameter)
        else:
            num, constraint = self._parameters[parameter]
            cv = constraint.central_value
            try:
                cv = float(cv)
            except (TypeError, ValueError):
                # return the num-th entry of the central value vector
                return cv[num]
            else:
                if num == 0:
                    return cv
                else:
                    raise ValueError("Something went wrong when getting the central value of {}".format(parameter))

    def get_central_all(self):
        """Get central values of all constrained parameters."""
        return {parameter: self.get_central(parameter) for parameter in self._parameters.keys()}

    def get_random_all(self, size=None):
        """Get random values for all constrained parameters where they are
        distributed according to the probability distribution applied.

        If `size` is not None, the dictionary values will be arrays with length
        `size` rather than numbers."""
        # first, generate random values for every single one of the constraints
        random_constraints = {constraint: constraint.get_random(size=size)
                              for constraint, _ in self._constraints}
        random_dict = {}
        # now, iterate over the parameters
        for parameter, constraints in self._parameters.items():
            num, constraint = constraints
            carr = random_constraints[constraint]
            if size is None and num == 0 and np.isscalar(carr):
                random_dict[parameter] = carr
            elif size is None and num == 0 and carr.shape == tuple():
                random_dict[parameter] = carr
            elif size is None:
                random_dict[parameter] = carr[num]
            elif carr.shape == (size,) and num == 0:
                random_dict[parameter] = carr
            elif carr.ndim == 2 and carr.shape[0] == size:
                random_dict[parameter] = carr[:, num]
            else:
                raise ValueError("Unexpected error in get_random_all")
        return random_dict

    def get_1d_errors(self, N=1000):
        warnings.warn("This function was renamed to `get_1d_errors_random` "
                      "in v0.16 and will be removed in the future. ",
                      DeprecationWarning)
        self.get_1d_errors_random(N)

    def get_1d_errors_random(self, N=1000):
        """Get the Gaussian standard deviation for every parameter/observable
        obtained by generating N random values."""
        random_dict_list = [self.get_random_all() for i in range(N)]
        interval_dict = {}
        for k in random_dict_list[0].keys():
            arr = np.array([r[k] for r in random_dict_list])
            interval_dict[k] = np.std(arr)
        return interval_dict

    def get_1d_errors_rightleft(self):
        r"""Get the left and right error for every parameter/observable
        defined such that it contains 68% probability on each side of the
        central value."""
        errors_left = [constraint.error_left for constraint, _ in self._constraints]
        errors_right = [constraint.error_right for constraint, _ in self._constraints]
        error_dict = {}
        # now, iterate over the parameters
        for parameter, constraints in self._parameters.items():
            num, constraint = constraints
            idx = ([constraint for constraint, _ in self._constraints]).index(constraint)
            error_dict[parameter] = (np.ravel([errors_right[idx]])[num],
                                     np.ravel([errors_left[idx]])[num])
        return error_dict

    def get_logprobability_single(self, parameter, value, delta=False):
        """Return a dictionary with the logarithm of the probability for each
        constraint/probability distribution for a given value of a
        single parameter.
        """
        num, constraint = self._parameters[parameter]
        parameters = OrderedDict(self._constraints)[constraint]
        if len(parameters) == 1:
            if not delta:
                return constraint.logpdf(value)
            else:
                return constraint.delta_logpdf(value)
        else:
            # for multivariate distributions
            exclude = tuple(i for i, p in enumerate(parameters)
                            if p != parameter)
            if not delta:
                return constraint.logpdf([value], exclude=exclude)
            else:
                return constraint.delta_logpdf([value], exclude=exclude)

    def get_logprobability_all(self, par_dict, exclude_parameters=[], delta=False):
        """Return a dictionary with the logarithm of the probability for each
        constraint/probability distribution.

        Inputs
        ------
        - par_dict
          A dictionary of the form {parameter: value, ...} where parameter
          is a string and value a float.
        - exclude_parameters (optional)
          An iterable of strings (default: empty) that specifies parameters
          that should be ignored. Univariate constraints on this parameter
          will be skipped, while for multivariate normally distributed
          constraints, the parameter will be removed from the covariance.
        """
        prob_dict = {}
        for constraint, parameters in self._constraints:
            # list of constrained parameters except the excluded ones
            p_cons = [p for p in parameters
                      if (p not in exclude_parameters
                      and (parameters.index(p), constraint) == self._parameters.get(p, None))]
            x = [par_dict[p] for p in p_cons]
            if not x:
                # nothing to constrain
                continue
            if len(parameters) == 1:
                # 1D constraints should have a scalar, not a length-1 array
                if not delta:
                    prob_dict[constraint] = constraint.logpdf(x[0])
                else:
                    prob_dict[constraint] = constraint.delta_logpdf(x[0])
            else:
                # for multivariate distributions
                if len(x) == len(parameters):
                    # no parameter has been excluded
                    exclude = None
                else:
                    exclude = tuple(i for i, p in enumerate(parameters)
                                    if p not in p_cons)
                if not delta:
                    prob_dict[constraint] = constraint.logpdf(x, exclude=exclude)
                else:
                    prob_dict[constraint] = constraint.delta_logpdf(x, exclude=exclude)
        return prob_dict

    def copy(self):
        # this is to have a .copy() method like for a dictionary
        return copy.deepcopy(self)

    def get_yaml(self, *args, **kwargs):
        """Get a YAML string representation of all constraints.

        The optional parameter `pname` allows to customize the name of the key
        containing the parameter list of each constraint (e.g. 'parameters',
        'observables').
        """
        return yaml.dump(self.get_yaml_dict(*args, **kwargs))

    def get_yaml_dict(self, pname='parameters'):
        """Get an ordered dictionary representation of all constraints that can
        be dumped as YAML string.

        The optional parameter `pname` allows to customize the name of the key
        containing the parameter list of each constraint (e.g. 'parameters',
        'observables').
        """
        data = []
        for constraint, parameters in self._constraints:
            d = OrderedDict()
            d[pname] = [list(p) if isinstance(p, tuple) else p for p in parameters]
            d['values'] = constraint.get_dict(distribution=True,
                                              iterate=True, arraytolist=True)
            data.append(d)
        args = inspect.signature(self.__class__).parameters.keys()
        meta = {k: v for k, v in self.__dict__.items()
                if k[0] != '_' and v != '' and k not in args}
        if not args and not meta:
            return data
        else:
            datameta = OrderedDict()
            if args:
                datameta['arguments'] = {arg: self.__dict__[arg] for arg in args}
            if meta:
                datameta['metadata'] = meta
            datameta['constraints'] = data
            return datameta

    @classmethod
    def from_yaml(cls, stream, *args, **kwargs):
        """Class method: load constraint from a YAML string or stream."""
        data = yaml.safe_load(stream)
        return cls.from_yaml_dict(data, *args, **kwargs)

    @classmethod
    def from_yaml_dict(cls, data, pname='parameters', instance=None, *args, **kwargs):
        """Class method: load constraint from a dictionary or list of dicts.

        If it is a dictionary, it should have the form:

        ```{
        'metadata': {...},  # optional, do set attributes of the instance
        'arguments': {...},  # optional, to specify keyword arguments for instantiation,
        'constraints': [...],  # required, the list of constraints
        }

        Alternatively, the list of constraints can be directly given.
        This list should have elements in one of the two possible forms:

        1. Dictionary as returned by `Probability.get_dict`:
        ```{
        pname: [...],  # required, list of constrained parameters
        'values': {
            'distribution': '...',  # required, string identifying ProbabilityDistribution, e.g. 'normal'
            '...': '...',  # required, any arguments for the instantiation of the ProbabilityDistribution
            }
        }
        ```

        2. String representing one or several (to be convolved) constraints:
        ```{
        'my_parameter': '1.0 ± 0.2 ± 0.1 e-3'
        }
        """
        if isinstance(data, dict):
            constraints = data['constraints']
            meta = data.get('metadata', {})
            arguments = data['arguments']
            kwargs.update(arguments)
            inst = instance or cls(*args, **kwargs)
            for m in meta:
                inst.__dict__[m] = meta[m]
        else:
            inst = instance or cls(*args, **kwargs)
            constraints = data.copy()
        for c in constraints:
            if pname not in c:
                if 'values' not in c and len(c) == 1:
                    # this means we probably have a constraint of the
                    # form parameter: constraint_string
                    for k, v in c.items():  # this loop runs only once
                        inst.set_constraint(k, v)
                        break  # just to be sure
                    continue
                else:
                    # in this case something is clearly wrong. Mabye the
                    # wrong "pname" was used.
                    raise ValueError('Key ' + pname + ' not found. '
                                     'Please check the `pname` argument.')
            else:
                parameters = [tuple(p) if isinstance(p, list) else p for p in c[pname]]
                pds = dict2dist(c['values'])
                combined_pd = convolve_distributions(pds)
                inst.add_constraint(parameters, combined_pd)
        return inst

Ancestors (in MRO)

Static methods

def __init__(

self)

Initialize self. See help(type(self)) for accurate signature.

def __init__(self):
        # Here we have two data structures. _constraints has the form
        # [ (<constraint1>, [parameter1, parameter2, ...]), (<constraint2>, ...) ]
        # where the <constraint>s are instances of ProbabilityDistribution
        # and the parameters string names, while _parameters has the form
        # { parameter1: (num1, <constraint1>)} where num1 is 0 for a
        # univariate constraint and otherwise gives the position of
        # parameter1 in the multivariate vector.
        # In summary, having this list and dictionary allow a bijective mapping between
        # constraints and parameters.
        # Note that one constraint can apply to multiple parameters (e.g.
        # in case of correlated uncertainties), but a parameter can only
        # have a single constraint (changed in v0.16!).
    self._constraints = []
    self._parameters = OrderedDict()

def add_constraint(

self, parameters, constraint)

Set the constraint on one or several parameters/observables.

constraint must be an instance of a child of ProbabilityDistribution.

Note that if there already exists a constraint, it will be removed.

def add_constraint(self, parameters, constraint):
    """Set the constraint on one or several parameters/observables.
    `constraint` must be an instance of a child of ProbabilityDistribution.
    Note that if there already exists a constraint, it will be removed."""
    for num, parameter in enumerate(parameters):
        # remove constraint if there is one
        if parameter in self._parameters:
            self.remove_constraint(parameter)
    # populate the dictionaries defined in __init__
        self._parameters[parameter] = (num, constraint)
    self._constraints.append((constraint, parameters))

def copy(

self)

def copy(self):
    # this is to have a .copy() method like for a dictionary
    return copy.deepcopy(self)

def get_1d_errors(

self, N=1000)

def get_1d_errors(self, N=1000):
    warnings.warn("This function was renamed to `get_1d_errors_random` "
                  "in v0.16 and will be removed in the future. ",
                  DeprecationWarning)
    self.get_1d_errors_random(N)

def get_1d_errors_random(

self, N=1000)

Get the Gaussian standard deviation for every parameter/observable obtained by generating N random values.

def get_1d_errors_random(self, N=1000):
    """Get the Gaussian standard deviation for every parameter/observable
    obtained by generating N random values."""
    random_dict_list = [self.get_random_all() for i in range(N)]
    interval_dict = {}
    for k in random_dict_list[0].keys():
        arr = np.array([r[k] for r in random_dict_list])
        interval_dict[k] = np.std(arr)
    return interval_dict

def get_1d_errors_rightleft(

self)

Get the left and right error for every parameter/observable defined such that it contains 68% probability on each side of the central value.

def get_1d_errors_rightleft(self):
    r"""Get the left and right error for every parameter/observable
    defined such that it contains 68% probability on each side of the
    central value."""
    errors_left = [constraint.error_left for constraint, _ in self._constraints]
    errors_right = [constraint.error_right for constraint, _ in self._constraints]
    error_dict = {}
    # now, iterate over the parameters
    for parameter, constraints in self._parameters.items():
        num, constraint = constraints
        idx = ([constraint for constraint, _ in self._constraints]).index(constraint)
        error_dict[parameter] = (np.ravel([errors_right[idx]])[num],
                                 np.ravel([errors_left[idx]])[num])
    return error_dict

def get_central(

self, parameter)

Get the central value of a parameter

def get_central(self, parameter):
    """Get the central value of a parameter"""
    if parameter not in self._parameters.keys():
        raise ValueError('No constraints applied to parameter/observable ' + parameter)
    else:
        num, constraint = self._parameters[parameter]
        cv = constraint.central_value
        try:
            cv = float(cv)
        except (TypeError, ValueError):
            # return the num-th entry of the central value vector
            return cv[num]
        else:
            if num == 0:
                return cv
            else:
                raise ValueError("Something went wrong when getting the central value of {}".format(parameter))

def get_central_all(

self)

Get central values of all constrained parameters.

def get_central_all(self):
    """Get central values of all constrained parameters."""
    return {parameter: self.get_central(parameter) for parameter in self._parameters.keys()}

def get_logprobability_all(

self, par_dict, exclude_parameters=[], delta=False)

Return a dictionary with the logarithm of the probability for each constraint/probability distribution.

Inputs

  • par_dict A dictionary of the form {parameter: value, ...} where parameter is a string and value a float.
  • exclude_parameters (optional) An iterable of strings (default: empty) that specifies parameters that should be ignored. Univariate constraints on this parameter will be skipped, while for multivariate normally distributed constraints, the parameter will be removed from the covariance.
def get_logprobability_all(self, par_dict, exclude_parameters=[], delta=False):
    """Return a dictionary with the logarithm of the probability for each
    constraint/probability distribution.
    Inputs
    ------
    - par_dict
      A dictionary of the form {parameter: value, ...} where parameter
      is a string and value a float.
    - exclude_parameters (optional)
      An iterable of strings (default: empty) that specifies parameters
      that should be ignored. Univariate constraints on this parameter
      will be skipped, while for multivariate normally distributed
      constraints, the parameter will be removed from the covariance.
    """
    prob_dict = {}
    for constraint, parameters in self._constraints:
        # list of constrained parameters except the excluded ones
        p_cons = [p for p in parameters
                  if (p not in exclude_parameters
                  and (parameters.index(p), constraint) == self._parameters.get(p, None))]
        x = [par_dict[p] for p in p_cons]
        if not x:
            # nothing to constrain
            continue
        if len(parameters) == 1:
            # 1D constraints should have a scalar, not a length-1 array
            if not delta:
                prob_dict[constraint] = constraint.logpdf(x[0])
            else:
                prob_dict[constraint] = constraint.delta_logpdf(x[0])
        else:
            # for multivariate distributions
            if len(x) == len(parameters):
                # no parameter has been excluded
                exclude = None
            else:
                exclude = tuple(i for i, p in enumerate(parameters)
                                if p not in p_cons)
            if not delta:
                prob_dict[constraint] = constraint.logpdf(x, exclude=exclude)
            else:
                prob_dict[constraint] = constraint.delta_logpdf(x, exclude=exclude)
    return prob_dict

def get_logprobability_single(

self, parameter, value, delta=False)

Return a dictionary with the logarithm of the probability for each constraint/probability distribution for a given value of a single parameter.

def get_logprobability_single(self, parameter, value, delta=False):
    """Return a dictionary with the logarithm of the probability for each
    constraint/probability distribution for a given value of a
    single parameter.
    """
    num, constraint = self._parameters[parameter]
    parameters = OrderedDict(self._constraints)[constraint]
    if len(parameters) == 1:
        if not delta:
            return constraint.logpdf(value)
        else:
            return constraint.delta_logpdf(value)
    else:
        # for multivariate distributions
        exclude = tuple(i for i, p in enumerate(parameters)
                        if p != parameter)
        if not delta:
            return constraint.logpdf([value], exclude=exclude)
        else:
            return constraint.delta_logpdf([value], exclude=exclude)

def get_random_all(

self, size=None)

Get random values for all constrained parameters where they are distributed according to the probability distribution applied.

If size is not None, the dictionary values will be arrays with length size rather than numbers.

def get_random_all(self, size=None):
    """Get random values for all constrained parameters where they are
    distributed according to the probability distribution applied.
    If `size` is not None, the dictionary values will be arrays with length
    `size` rather than numbers."""
    # first, generate random values for every single one of the constraints
    random_constraints = {constraint: constraint.get_random(size=size)
                          for constraint, _ in self._constraints}
    random_dict = {}
    # now, iterate over the parameters
    for parameter, constraints in self._parameters.items():
        num, constraint = constraints
        carr = random_constraints[constraint]
        if size is None and num == 0 and np.isscalar(carr):
            random_dict[parameter] = carr
        elif size is None and num == 0 and carr.shape == tuple():
            random_dict[parameter] = carr
        elif size is None:
            random_dict[parameter] = carr[num]
        elif carr.shape == (size,) and num == 0:
            random_dict[parameter] = carr
        elif carr.ndim == 2 and carr.shape[0] == size:
            random_dict[parameter] = carr[:, num]
        else:
            raise ValueError("Unexpected error in get_random_all")
    return random_dict

def get_yaml(

self, *args, **kwargs)

Get a YAML string representation of all constraints.

The optional parameter pname allows to customize the name of the key containing the parameter list of each constraint (e.g. 'parameters', 'observables').

def get_yaml(self, *args, **kwargs):
    """Get a YAML string representation of all constraints.
    The optional parameter `pname` allows to customize the name of the key
    containing the parameter list of each constraint (e.g. 'parameters',
    'observables').
    """
    return yaml.dump(self.get_yaml_dict(*args, **kwargs))

def get_yaml_dict(

self, pname='parameters')

Get an ordered dictionary representation of all constraints that can be dumped as YAML string.

The optional parameter pname allows to customize the name of the key containing the parameter list of each constraint (e.g. 'parameters', 'observables').

def get_yaml_dict(self, pname='parameters'):
    """Get an ordered dictionary representation of all constraints that can
    be dumped as YAML string.
    The optional parameter `pname` allows to customize the name of the key
    containing the parameter list of each constraint (e.g. 'parameters',
    'observables').
    """
    data = []
    for constraint, parameters in self._constraints:
        d = OrderedDict()
        d[pname] = [list(p) if isinstance(p, tuple) else p for p in parameters]
        d['values'] = constraint.get_dict(distribution=True,
                                          iterate=True, arraytolist=True)
        data.append(d)
    args = inspect.signature(self.__class__).parameters.keys()
    meta = {k: v for k, v in self.__dict__.items()
            if k[0] != '_' and v != '' and k not in args}
    if not args and not meta:
        return data
    else:
        datameta = OrderedDict()
        if args:
            datameta['arguments'] = {arg: self.__dict__[arg] for arg in args}
        if meta:
            datameta['metadata'] = meta
        datameta['constraints'] = data
        return datameta

def remove_constraint(

self, parameter)

Remove existing constraint on a parameter.

def remove_constraint(self, parameter):
    """Remove existing constraint on a parameter."""
    self._parameters.pop(parameter, None)

def remove_constraints(

self, parameter)

def remove_constraints(self, parameter):
    warnings.warn("This function was renamed to `remove_constraint` "
                  "in v0.16 and will be removed in the future.",
                  DeprecationWarning)
    self.remove_constraint(parameter)

def set_constraint(

self, parameter, constraint_string=None, constraint_dict=None)

Set the constraint on a parameter/observable by specifying a string or a dictionary. If several constraints (e.g. several types of uncertainty) are given, the total constraint will be the convolution of the individual distributions. Existing constraints will be removed.

Arguments:

  • parameter: parameter string (or tuple)
  • constraint_string: string specifying the constraint that can be e.g. of the form '1.55(3)(1)' or '4.0±0.1'.
  • constraint_dict: dictionary or list of several dictionaries of the form {'distribution': 'distribution_name', 'arg1': val1, ...}, where 'distribution_name' is a string name associated to each probability distribution (see flavio.statistics.probability.class_from_string) and 'arg1', val1 are argument/value pairs of the arguments of the distribution class's constructor (e.g.central_value, standard_deviation for a normal distribution).

constraint_string and constraint_dict must not be present simultaneously.

def set_constraint(self, parameter, constraint_string=None,
                                    constraint_dict=None):
    r"""Set the constraint on a parameter/observable by specifying a string
    or a dictionary. If several constraints (e.g. several types of
    uncertainty) are given, the total constraint will be the convolution
    of the individual distributions. Existing constraints will be removed.
    Arguments:
    - parameter: parameter string (or tuple)
    - constraint_string: string specifying the constraint that can be e.g.
      of the form `'1.55(3)(1)'` or `'4.0±0.1'`.
    - constraint_dict: dictionary or list of several dictionaries of the
      form `{'distribution': 'distribution_name', 'arg1': val1, ...}`, where
      'distribution_name' is a string name associated to each probability
      distribution (see `flavio.statistics.probability.class_from_string`)
      and `'arg1'`, `val1` are argument/value pairs of the arguments of
      the distribution class's constructor (e.g.`central_value`,
      `standard_deviation` for a normal distribution).
    `constraint_string` and `constraint_dict` must not be present
    simultaneously.
    """
    if constraint_string is not None and constraint_dict is not None:
        raise ValueError("constraint_string and constraint_dict cannot"
                         " be used at the same time.")
    if constraint_string is not None:
        pds = constraints_from_string(constraint_string)
    elif constraint_dict is not None:
        pds = dict2dist(constraint_dict)
    else:
        raise TypeError("Either constraint_string or constraint_dict have"
                        " to be specified.")
    combined_pd = convolve_distributions(pds)
    self.add_constraint([parameter], combined_pd)

Instance variables

var all_parameters

Returns a list of all parameters/observables constrained.

Methods

def from_yaml(

cls, stream, *args, **kwargs)

Class method: load constraint from a YAML string or stream.

@classmethod
def from_yaml(cls, stream, *args, **kwargs):
    """Class method: load constraint from a YAML string or stream."""
    data = yaml.safe_load(stream)
    return cls.from_yaml_dict(data, *args, **kwargs)

def from_yaml_dict(

cls, data, pname='parameters', instance=None, *args, **kwargs)

Class method: load constraint from a dictionary or list of dicts.

If it is a dictionary, it should have the form:

```{ 'metadata': {...}, # optional, do set attributes of the instance 'arguments': {...}, # optional, to specify keyword arguments for instantiation, 'constraints': [...], # required, the list of constraints }

Alternatively, the list of constraints can be directly given. This list should have elements in one of the two possible forms:

  1. Dictionary as returned by Probability.get_dict: { pname: [...], # required, list of constrained parameters 'values': { 'distribution': '...', # required, string identifying ProbabilityDistribution, e.g. 'normal' '...': '...', # required, any arguments for the instantiation of the ProbabilityDistribution } }

  2. String representing one or several (to be convolved) constraints: ```{ 'my_parameter': '1.0 ± 0.2 ± 0.1 e-3' }

@classmethod
def from_yaml_dict(cls, data, pname='parameters', instance=None, *args, **kwargs):
    """Class method: load constraint from a dictionary or list of dicts.
    If it is a dictionary, it should have the form:
    ```{
    'metadata': {...},  # optional, do set attributes of the instance
    'arguments': {...},  # optional, to specify keyword arguments for instantiation,
    'constraints': [...],  # required, the list of constraints
    }
    Alternatively, the list of constraints can be directly given.
    This list should have elements in one of the two possible forms:
    1. Dictionary as returned by `Probability.get_dict`:
    ```{
    pname: [...],  # required, list of constrained parameters
    'values': {
        'distribution': '...',  # required, string identifying ProbabilityDistribution, e.g. 'normal'
        '...': '...',  # required, any arguments for the instantiation of the ProbabilityDistribution
        }
    }
    ```
    2. String representing one or several (to be convolved) constraints:
    ```{
    'my_parameter': '1.0 ± 0.2 ± 0.1 e-3'
    }
    """
    if isinstance(data, dict):
        constraints = data['constraints']
        meta = data.get('metadata', {})
        arguments = data['arguments']
        kwargs.update(arguments)
        inst = instance or cls(*args, **kwargs)
        for m in meta:
            inst.__dict__[m] = meta[m]
    else:
        inst = instance or cls(*args, **kwargs)
        constraints = data.copy()
    for c in constraints:
        if pname not in c:
            if 'values' not in c and len(c) == 1:
                # this means we probably have a constraint of the
                # form parameter: constraint_string
                for k, v in c.items():  # this loop runs only once
                    inst.set_constraint(k, v)
                    break  # just to be sure
                continue
            else:
                # in this case something is clearly wrong. Mabye the
                # wrong "pname" was used.
                raise ValueError('Key ' + pname + ' not found. '
                                 'Please check the `pname` argument.')
        else:
            parameters = [tuple(p) if isinstance(p, list) else p for p in c[pname]]
            pds = dict2dist(c['values'])
            combined_pd = convolve_distributions(pds)
            inst.add_constraint(parameters, combined_pd)
    return inst

class Implementation

An implementation is the theoretical prediction for an auxiliary quantity.

class Implementation(NamedInstanceClass):
    """An implementation is the theoretical prediction for an auxiliary
    quantity."""

    @classmethod
    def show_all(cls):
        all_dict = {}
        for name in cls.instances:
            inst = cls[name]
            quant = inst.quantity
            descr = inst.description
            all_dict[quant] = {name: descr}
        return all_dict

    def __init__(self, name, quantity, function):
        super().__init__(name)
        try:
            AuxiliaryQuantity[quantity]
        except KeyError:
            raise ValueError("The quantity " + quantity + " does not exist")
        self.quantity = quantity
        self.function = function
        self.quantity_obj = AuxiliaryQuantity[quantity]

    def get_central(self, constraints_obj, wc_obj, *args, **kwargs):
        par_dict = constraints_obj.get_central_all()
        fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
        return self.function(fwc_obj, par_dict, *args, **kwargs)

    def get_random(self, constraints_obj, wc_obj, *args, **kwargs):
        par_dict = constraints_obj.get_random_all()
        fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
        return self.function(fwc_obj, par_dict, *args, **kwargs)

    def get(self, par_dict, wc_obj, *args, **kwargs):
        fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
        return self.function(fwc_obj, par_dict, *args, **kwargs)

Ancestors (in MRO)

Class variables

var instances

Static methods

def __init__(

self, name, quantity, function)

Initialize self. See help(type(self)) for accurate signature.

def __init__(self, name, quantity, function):
    super().__init__(name)
    try:
        AuxiliaryQuantity[quantity]
    except KeyError:
        raise ValueError("The quantity " + quantity + " does not exist")
    self.quantity = quantity
    self.function = function
    self.quantity_obj = AuxiliaryQuantity[quantity]

def get(

self, par_dict, wc_obj, *args, **kwargs)

def get(self, par_dict, wc_obj, *args, **kwargs):
    fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
    return self.function(fwc_obj, par_dict, *args, **kwargs)

def get_central(

self, constraints_obj, wc_obj, *args, **kwargs)

def get_central(self, constraints_obj, wc_obj, *args, **kwargs):
    par_dict = constraints_obj.get_central_all()
    fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
    return self.function(fwc_obj, par_dict, *args, **kwargs)

def get_random(

self, constraints_obj, wc_obj, *args, **kwargs)

def get_random(self, constraints_obj, wc_obj, *args, **kwargs):
    par_dict = constraints_obj.get_random_all()
    fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
    return self.function(fwc_obj, par_dict, *args, **kwargs)

def set_description(

self, description)

def set_description(self, description):
    self.description = description

Instance variables

var function

var quantity

var quantity_obj

Methods

def clear_all(

cls)

Delete all instances.

@classmethod
def clear_all(cls):
    """Delete all instances."""
    cls.instances = OrderedDict()

def del_instance(

cls, name)

@classmethod
def del_instance(cls, name):
    del cls.instances[name]

def find(

cls, regex)

Find all instance names matching the regular expression regex.

@classmethod
def find(cls, regex):
    """Find all instance names matching the regular expression `regex`."""
    rc = re.compile(regex)
    return list(filter(rc.search, cls.instances))

def get_instance(

cls, name)

@classmethod
def get_instance(cls, name):
    return cls.instances[name]

def show_all(

cls)

@classmethod
def show_all(cls):
    all_dict = {}
    for name in cls.instances:
        inst = cls[name]
        quant = inst.quantity
        descr = inst.description
        all_dict[quant] = {name: descr}
    return all_dict

class Measurement

A (experimental) measurement associates one (or several) probability distributions to one (or several) observables. If it contains several observables, these can (but do not have to) be correlated.

To instantiate the class, call Measurement(name) with a string uniquely describing the measurement (e.g. 'CMS Bs->mumu 2012').

To add a constraint (= central vaue(s) and uncertainty(s)), use

add_constraint(observables, constraint)

where constraint is an instance of a descendant of ProbabilityDistribution and observables is a list of either - a string observable name in the case of observables without arguments - or a tuple (name, x_1, ..., x_n), where the x_i are float values for the arguments, of an observable with n arguments.

class Measurement(Constraints, NamedInstanceClass):
    """A (experimental) measurement associates one (or several) probability
    distributions to one (or several) observables. If it contains several
    observables, these can (but do not have to) be correlated.

    To instantiate the class, call Measurement(name) with a string uniquely
    describing the measurement (e.g. 'CMS Bs->mumu 2012').

    To add a constraint (= central vaue(s) and uncertainty(s)), use

    `add_constraint(observables, constraint)`

    where `constraint` is an instance of a descendant of
    ProbabilityDistribution and `observables` is a list of either
     - a string observable name in the case of observables without arguments
     - or a tuple `(name, x_1, ..., x_n)`, where the `x_i` are float values for
       the arguments, of an observable with `n` arguments.
    """

    def __init__(self, name):
        NamedInstanceClass.__init__(self, name)
        Constraints.__init__(self)
        self.inspire = ''
        self.experiment = ''
        self.url = ''

    def __repr__(self):
        return "Measurement('{}')".format(self.name)

    def _repr_markdown_(self):
        md = "### Measurement `{}`\n\n".format(self.name)
        if self.experiment:
            md += "Experiment: {}\n\n".format(self.experiment)
        if self.inspire:
            md += ("[Inspire](http://inspirehep.net/search?&p=texkey+{})\n\n"
                   .format(urllib.parse.quote(self.inspire)))
        if self.url:
            md += "URL: <{}>\n\n".format(self.url)
        if self.description:
            md += "Description: {}\n\n".format(self.description)
        if self.all_parameters:
            md += "Measured observables:\n\n"
            for obs in self.all_parameters:
                if isinstance(obs, tuple):
                    name = obs[0]
                    args = obs[1:]
                    argnames = Observable[name].arguments
                    md += "- {}".format(Observable[name].tex)
                    for i, arg in enumerate(args):
                        md += ", `{}` = {}".format(argnames[i], arg)
                    md += "\n"
                else:
                    md += "- {}\n".format(Observable[obs].tex)
        return md

Ancestors (in MRO)

Class variables

var instances

Static methods

def __init__(

self, name)

Initialize self. See help(type(self)) for accurate signature.

def __init__(self, name):
    NamedInstanceClass.__init__(self, name)
    Constraints.__init__(self)
    self.inspire = ''
    self.experiment = ''
    self.url = ''

def add_constraint(

self, parameters, constraint)

Set the constraint on one or several parameters/observables.

constraint must be an instance of a child of ProbabilityDistribution.

Note that if there already exists a constraint, it will be removed.

def add_constraint(self, parameters, constraint):
    """Set the constraint on one or several parameters/observables.
    `constraint` must be an instance of a child of ProbabilityDistribution.
    Note that if there already exists a constraint, it will be removed."""
    for num, parameter in enumerate(parameters):
        # remove constraint if there is one
        if parameter in self._parameters:
            self.remove_constraint(parameter)
    # populate the dictionaries defined in __init__
        self._parameters[parameter] = (num, constraint)
    self._constraints.append((constraint, parameters))

def copy(

self)

def copy(self):
    # this is to have a .copy() method like for a dictionary
    return copy.deepcopy(self)

def get_1d_errors(

self, N=1000)

def get_1d_errors(self, N=1000):
    warnings.warn("This function was renamed to `get_1d_errors_random` "
                  "in v0.16 and will be removed in the future. ",
                  DeprecationWarning)
    self.get_1d_errors_random(N)

def get_1d_errors_random(

self, N=1000)

Get the Gaussian standard deviation for every parameter/observable obtained by generating N random values.

def get_1d_errors_random(self, N=1000):
    """Get the Gaussian standard deviation for every parameter/observable
    obtained by generating N random values."""
    random_dict_list = [self.get_random_all() for i in range(N)]
    interval_dict = {}
    for k in random_dict_list[0].keys():
        arr = np.array([r[k] for r in random_dict_list])
        interval_dict[k] = np.std(arr)
    return interval_dict

def get_1d_errors_rightleft(

self)

Get the left and right error for every parameter/observable defined such that it contains 68% probability on each side of the central value.

def get_1d_errors_rightleft(self):
    r"""Get the left and right error for every parameter/observable
    defined such that it contains 68% probability on each side of the
    central value."""
    errors_left = [constraint.error_left for constraint, _ in self._constraints]
    errors_right = [constraint.error_right for constraint, _ in self._constraints]
    error_dict = {}
    # now, iterate over the parameters
    for parameter, constraints in self._parameters.items():
        num, constraint = constraints
        idx = ([constraint for constraint, _ in self._constraints]).index(constraint)
        error_dict[parameter] = (np.ravel([errors_right[idx]])[num],
                                 np.ravel([errors_left[idx]])[num])
    return error_dict

def get_central(

self, parameter)

Get the central value of a parameter

def get_central(self, parameter):
    """Get the central value of a parameter"""
    if parameter not in self._parameters.keys():
        raise ValueError('No constraints applied to parameter/observable ' + parameter)
    else:
        num, constraint = self._parameters[parameter]
        cv = constraint.central_value
        try:
            cv = float(cv)
        except (TypeError, ValueError):
            # return the num-th entry of the central value vector
            return cv[num]
        else:
            if num == 0:
                return cv
            else:
                raise ValueError("Something went wrong when getting the central value of {}".format(parameter))

def get_central_all(

self)

Get central values of all constrained parameters.

def get_central_all(self):
    """Get central values of all constrained parameters."""
    return {parameter: self.get_central(parameter) for parameter in self._parameters.keys()}

def get_logprobability_all(

self, par_dict, exclude_parameters=[], delta=False)

Return a dictionary with the logarithm of the probability for each constraint/probability distribution.

Inputs

  • par_dict A dictionary of the form {parameter: value, ...} where parameter is a string and value a float.
  • exclude_parameters (optional) An iterable of strings (default: empty) that specifies parameters that should be ignored. Univariate constraints on this parameter will be skipped, while for multivariate normally distributed constraints, the parameter will be removed from the covariance.
def get_logprobability_all(self, par_dict, exclude_parameters=[], delta=False):
    """Return a dictionary with the logarithm of the probability for each
    constraint/probability distribution.
    Inputs
    ------
    - par_dict
      A dictionary of the form {parameter: value, ...} where parameter
      is a string and value a float.
    - exclude_parameters (optional)
      An iterable of strings (default: empty) that specifies parameters
      that should be ignored. Univariate constraints on this parameter
      will be skipped, while for multivariate normally distributed
      constraints, the parameter will be removed from the covariance.
    """
    prob_dict = {}
    for constraint, parameters in self._constraints:
        # list of constrained parameters except the excluded ones
        p_cons = [p for p in parameters
                  if (p not in exclude_parameters
                  and (parameters.index(p), constraint) == self._parameters.get(p, None))]
        x = [par_dict[p] for p in p_cons]
        if not x:
            # nothing to constrain
            continue
        if len(parameters) == 1:
            # 1D constraints should have a scalar, not a length-1 array
            if not delta:
                prob_dict[constraint] = constraint.logpdf(x[0])
            else:
                prob_dict[constraint] = constraint.delta_logpdf(x[0])
        else:
            # for multivariate distributions
            if len(x) == len(parameters):
                # no parameter has been excluded
                exclude = None
            else:
                exclude = tuple(i for i, p in enumerate(parameters)
                                if p not in p_cons)
            if not delta:
                prob_dict[constraint] = constraint.logpdf(x, exclude=exclude)
            else:
                prob_dict[constraint] = constraint.delta_logpdf(x, exclude=exclude)
    return prob_dict

def get_logprobability_single(

self, parameter, value, delta=False)

Return a dictionary with the logarithm of the probability for each constraint/probability distribution for a given value of a single parameter.

def get_logprobability_single(self, parameter, value, delta=False):
    """Return a dictionary with the logarithm of the probability for each
    constraint/probability distribution for a given value of a
    single parameter.
    """
    num, constraint = self._parameters[parameter]
    parameters = OrderedDict(self._constraints)[constraint]
    if len(parameters) == 1:
        if not delta:
            return constraint.logpdf(value)
        else:
            return constraint.delta_logpdf(value)
    else:
        # for multivariate distributions
        exclude = tuple(i for i, p in enumerate(parameters)
                        if p != parameter)
        if not delta:
            return constraint.logpdf([value], exclude=exclude)
        else:
            return constraint.delta_logpdf([value], exclude=exclude)

def get_random_all(

self, size=None)

Get random values for all constrained parameters where they are distributed according to the probability distribution applied.

If size is not None, the dictionary values will be arrays with length size rather than numbers.

def get_random_all(self, size=None):
    """Get random values for all constrained parameters where they are
    distributed according to the probability distribution applied.
    If `size` is not None, the dictionary values will be arrays with length
    `size` rather than numbers."""
    # first, generate random values for every single one of the constraints
    random_constraints = {constraint: constraint.get_random(size=size)
                          for constraint, _ in self._constraints}
    random_dict = {}
    # now, iterate over the parameters
    for parameter, constraints in self._parameters.items():
        num, constraint = constraints
        carr = random_constraints[constraint]
        if size is None and num == 0 and np.isscalar(carr):
            random_dict[parameter] = carr
        elif size is None and num == 0 and carr.shape == tuple():
            random_dict[parameter] = carr
        elif size is None:
            random_dict[parameter] = carr[num]
        elif carr.shape == (size,) and num == 0:
            random_dict[parameter] = carr
        elif carr.ndim == 2 and carr.shape[0] == size:
            random_dict[parameter] = carr[:, num]
        else:
            raise ValueError("Unexpected error in get_random_all")
    return random_dict

def get_yaml(

self, *args, **kwargs)

Get a YAML string representation of all constraints.

The optional parameter pname allows to customize the name of the key containing the parameter list of each constraint (e.g. 'parameters', 'observables').

def get_yaml(self, *args, **kwargs):
    """Get a YAML string representation of all constraints.
    The optional parameter `pname` allows to customize the name of the key
    containing the parameter list of each constraint (e.g. 'parameters',
    'observables').
    """
    return yaml.dump(self.get_yaml_dict(*args, **kwargs))

def get_yaml_dict(

self, pname='parameters')

Get an ordered dictionary representation of all constraints that can be dumped as YAML string.

The optional parameter pname allows to customize the name of the key containing the parameter list of each constraint (e.g. 'parameters', 'observables').

def get_yaml_dict(self, pname='parameters'):
    """Get an ordered dictionary representation of all constraints that can
    be dumped as YAML string.
    The optional parameter `pname` allows to customize the name of the key
    containing the parameter list of each constraint (e.g. 'parameters',
    'observables').
    """
    data = []
    for constraint, parameters in self._constraints:
        d = OrderedDict()
        d[pname] = [list(p) if isinstance(p, tuple) else p for p in parameters]
        d['values'] = constraint.get_dict(distribution=True,
                                          iterate=True, arraytolist=True)
        data.append(d)
    args = inspect.signature(self.__class__).parameters.keys()
    meta = {k: v for k, v in self.__dict__.items()
            if k[0] != '_' and v != '' and k not in args}
    if not args and not meta:
        return data
    else:
        datameta = OrderedDict()
        if args:
            datameta['arguments'] = {arg: self.__dict__[arg] for arg in args}
        if meta:
            datameta['metadata'] = meta
        datameta['constraints'] = data
        return datameta

def remove_constraint(

self, parameter)

Remove existing constraint on a parameter.

def remove_constraint(self, parameter):
    """Remove existing constraint on a parameter."""
    self._parameters.pop(parameter, None)

def remove_constraints(

self, parameter)

def remove_constraints(self, parameter):
    warnings.warn("This function was renamed to `remove_constraint` "
                  "in v0.16 and will be removed in the future.",
                  DeprecationWarning)
    self.remove_constraint(parameter)

def set_constraint(

self, parameter, constraint_string=None, constraint_dict=None)

Set the constraint on a parameter/observable by specifying a string or a dictionary. If several constraints (e.g. several types of uncertainty) are given, the total constraint will be the convolution of the individual distributions. Existing constraints will be removed.

Arguments:

  • parameter: parameter string (or tuple)
  • constraint_string: string specifying the constraint that can be e.g. of the form '1.55(3)(1)' or '4.0±0.1'.
  • constraint_dict: dictionary or list of several dictionaries of the form {'distribution': 'distribution_name', 'arg1': val1, ...}, where 'distribution_name' is a string name associated to each probability distribution (see flavio.statistics.probability.class_from_string) and 'arg1', val1 are argument/value pairs of the arguments of the distribution class's constructor (e.g.central_value, standard_deviation for a normal distribution).

constraint_string and constraint_dict must not be present simultaneously.

def set_constraint(self, parameter, constraint_string=None,
                                    constraint_dict=None):
    r"""Set the constraint on a parameter/observable by specifying a string
    or a dictionary. If several constraints (e.g. several types of
    uncertainty) are given, the total constraint will be the convolution
    of the individual distributions. Existing constraints will be removed.
    Arguments:
    - parameter: parameter string (or tuple)
    - constraint_string: string specifying the constraint that can be e.g.
      of the form `'1.55(3)(1)'` or `'4.0±0.1'`.
    - constraint_dict: dictionary or list of several dictionaries of the
      form `{'distribution': 'distribution_name', 'arg1': val1, ...}`, where
      'distribution_name' is a string name associated to each probability
      distribution (see `flavio.statistics.probability.class_from_string`)
      and `'arg1'`, `val1` are argument/value pairs of the arguments of
      the distribution class's constructor (e.g.`central_value`,
      `standard_deviation` for a normal distribution).
    `constraint_string` and `constraint_dict` must not be present
    simultaneously.
    """
    if constraint_string is not None and constraint_dict is not None:
        raise ValueError("constraint_string and constraint_dict cannot"
                         " be used at the same time.")
    if constraint_string is not None:
        pds = constraints_from_string(constraint_string)
    elif constraint_dict is not None:
        pds = dict2dist(constraint_dict)
    else:
        raise TypeError("Either constraint_string or constraint_dict have"
                        " to be specified.")
    combined_pd = convolve_distributions(pds)
    self.add_constraint([parameter], combined_pd)

def set_description(

self, description)

def set_description(self, description):
    self.description = description

Instance variables

var all_parameters

Returns a list of all parameters/observables constrained.

var experiment

var inspire

var url

Methods

def clear_all(

cls)

Delete all instances.

@classmethod
def clear_all(cls):
    """Delete all instances."""
    cls.instances = OrderedDict()

def del_instance(

cls, name)

@classmethod
def del_instance(cls, name):
    del cls.instances[name]

def find(

cls, regex)

Find all instance names matching the regular expression regex.

@classmethod
def find(cls, regex):
    """Find all instance names matching the regular expression `regex`."""
    rc = re.compile(regex)
    return list(filter(rc.search, cls.instances))

def from_yaml(

cls, stream, *args, **kwargs)

Class method: load constraint from a YAML string or stream.

@classmethod
def from_yaml(cls, stream, *args, **kwargs):
    """Class method: load constraint from a YAML string or stream."""
    data = yaml.safe_load(stream)
    return cls.from_yaml_dict(data, *args, **kwargs)

def from_yaml_dict(

cls, data, pname='parameters', instance=None, *args, **kwargs)

Class method: load constraint from a dictionary or list of dicts.

If it is a dictionary, it should have the form:

```{ 'metadata': {...}, # optional, do set attributes of the instance 'arguments': {...}, # optional, to specify keyword arguments for instantiation, 'constraints': [...], # required, the list of constraints }

Alternatively, the list of constraints can be directly given. This list should have elements in one of the two possible forms:

  1. Dictionary as returned by Probability.get_dict: { pname: [...], # required, list of constrained parameters 'values': { 'distribution': '...', # required, string identifying ProbabilityDistribution, e.g. 'normal' '...': '...', # required, any arguments for the instantiation of the ProbabilityDistribution } }

  2. String representing one or several (to be convolved) constraints: ```{ 'my_parameter': '1.0 ± 0.2 ± 0.1 e-3' }

@classmethod
def from_yaml_dict(cls, data, pname='parameters', instance=None, *args, **kwargs):
    """Class method: load constraint from a dictionary or list of dicts.
    If it is a dictionary, it should have the form:
    ```{
    'metadata': {...},  # optional, do set attributes of the instance
    'arguments': {...},  # optional, to specify keyword arguments for instantiation,
    'constraints': [...],  # required, the list of constraints
    }
    Alternatively, the list of constraints can be directly given.
    This list should have elements in one of the two possible forms:
    1. Dictionary as returned by `Probability.get_dict`:
    ```{
    pname: [...],  # required, list of constrained parameters
    'values': {
        'distribution': '...',  # required, string identifying ProbabilityDistribution, e.g. 'normal'
        '...': '...',  # required, any arguments for the instantiation of the ProbabilityDistribution
        }
    }
    ```
    2. String representing one or several (to be convolved) constraints:
    ```{
    'my_parameter': '1.0 ± 0.2 ± 0.1 e-3'
    }
    """
    if isinstance(data, dict):
        constraints = data['constraints']
        meta = data.get('metadata', {})
        arguments = data['arguments']
        kwargs.update(arguments)
        inst = instance or cls(*args, **kwargs)
        for m in meta:
            inst.__dict__[m] = meta[m]
    else:
        inst = instance or cls(*args, **kwargs)
        constraints = data.copy()
    for c in constraints:
        if pname not in c:
            if 'values' not in c and len(c) == 1:
                # this means we probably have a constraint of the
                # form parameter: constraint_string
                for k, v in c.items():  # this loop runs only once
                    inst.set_constraint(k, v)
                    break  # just to be sure
                continue
            else:
                # in this case something is clearly wrong. Mabye the
                # wrong "pname" was used.
                raise ValueError('Key ' + pname + ' not found. '
                                 'Please check the `pname` argument.')
        else:
            parameters = [tuple(p) if isinstance(p, list) else p for p in c[pname]]
            pds = dict2dist(c['values'])
            combined_pd = convolve_distributions(pds)
            inst.add_constraint(parameters, combined_pd)
    return inst

def get_instance(

cls, name)

@classmethod
def get_instance(cls, name):
    return cls.instances[name]

class NamedInstanceClass

Base class for classes that have named instances that can be accessed by their name.

Parameters

  • name: string

Methods

  • del_instance(name) Delete an instance
  • get_instance(name) Get an instance
  • set_description(description) Set the description
class NamedInstanceClass(object, metaclass=NamedInstanceMetaclass):
    """Base class for classes that have named instances that can be accessed
    by their name.

    Parameters
    ----------
     - name: string

    Methods
    -------
     - del_instance(name)
         Delete an instance
     - get_instance(name)
         Get an instance
     - set_description(description)
         Set the description
    """

    def __init__(self, name):
        if not hasattr(self.__class__, 'instances'):
            self.__class__.instances = OrderedDict()
        self.__class__.instances[name] = self
        self.name = name
        self.description = ''

    @classmethod
    def get_instance(cls, name):
        return cls.instances[name]

    @classmethod
    def del_instance(cls, name):
        del cls.instances[name]

    @classmethod
    def clear_all(cls):
        """Delete all instances."""
        cls.instances = OrderedDict()

    @classmethod
    def find(cls, regex):
        """Find all instance names matching the regular expression `regex`."""
        rc = re.compile(regex)
        return list(filter(rc.search, cls.instances))

    def set_description(self, description):
        self.description = description

Ancestors (in MRO)

Static methods

def __init__(

self, name)

Initialize self. See help(type(self)) for accurate signature.

def __init__(self, name):
    if not hasattr(self.__class__, 'instances'):
        self.__class__.instances = OrderedDict()
    self.__class__.instances[name] = self
    self.name = name
    self.description = ''

def set_description(

self, description)

def set_description(self, description):
    self.description = description

Instance variables

var description

var name

Methods

def clear_all(

cls)

Delete all instances.

@classmethod
def clear_all(cls):
    """Delete all instances."""
    cls.instances = OrderedDict()

def del_instance(

cls, name)

@classmethod
def del_instance(cls, name):
    del cls.instances[name]

def find(

cls, regex)

Find all instance names matching the regular expression regex.

@classmethod
def find(cls, regex):
    """Find all instance names matching the regular expression `regex`."""
    rc = re.compile(regex)
    return list(filter(rc.search, cls.instances))

def get_instance(

cls, name)

@classmethod
def get_instance(cls, name):
    return cls.instances[name]

class NamedInstanceMetaclass

type(object_or_name, bases, dict) type(object) -> the object's type type(name, bases, dict) -> a new type

class NamedInstanceMetaclass(type):
    # this is just needed to implement the getitem method on NamedInstanceClass
    # to allow the syntax MyClass['instancename'] as shorthand for
    # MyClass.get_instance('instancename'); same for
    # del MyClass['instancename'] instead of MyClass.del_instance('instancename')
    def __getitem__(cls, item):
        return cls.get_instance(item)

    def __delitem__(cls, item):
        return cls.del_instance(item)

Ancestors (in MRO)

class Observable

An Observable is something that can be measured experimentally and predicted theoretically.

class Observable(NamedInstanceClass):
    """An Observable is something that can be measured experimentally and
    predicted theoretically."""

    def __init__(self, name, arguments=None):
        super().__init__(name)
        if not hasattr(self.__class__, 'taxonomy'):
            self.__class__.taxonomy = tree()
        self.arguments = arguments
        self.prediction = None
        self.tex = ''

    def __repr__(self):
        return "Observable('{}', arguments={})".format(self.name, self.arguments)

    def _repr_markdown_(self):
        md = "### Observable `{}`\n\n".format(self.name)
        if self.tex:
            md += "Observable: {}\n\n".format(self.tex)
        if self.description:
            md += "Description: {}\n\n".format(self.description)
        if self.arguments is not None:
            md += "Arguments: "
            md += ','.join(["`{}`".format(a) for a in self.arguments])
            md += "\n\n"
        if self.prediction is not None:
            f = self.prediction.function
            from IPython.lib import pretty
            md += "Theory prediction: `{}`".format(pretty.pretty(f))
        return md

    @classmethod
    def argument_format(cls, obs, format='tuple'):
        """Class method: takes as input an observable name and numerical values
        for the arguements (if any) and returns as output the same in a specific
        form as specified by `format`: 'tuple' (default), 'list', or 'dict'.

        Example inputs:
        - ('dBR/dq2(B0->Denu)', 1)
        - {'name': 'dBR/dq2(B0->Denu)', 'q2': 1}

        Output:
        tuple: ('dBR/dq2(B0->Denu)', 1)
        list: ('dBR/dq2(B0->Denu)', 1)
        dict: {'name': 'dBR/dq2(B0->Denu)', 'q2': 1}

        For a string input for observables that don't have arguments:
        - 'eps_K'

        Output:
        tuple: 'eps_K'
        list: 'eps_K'
        dict: {'name': 'eps_K'}
        """
        if isinstance(obs, str):
            if cls[obs].arguments is not None:
                raise ValueError("Arguments missing for {}".format(obs))
            if format == 'dict':
                return {'name': obs}
            else:
                return obs
        elif isinstance(obs, (tuple, list)):
            args = cls[obs[0]].arguments
            if args is None or len(args) != len(obs) - 1:
                raise ValueError("Wrong number of arguments for {}".format(obs[0]))
            t = tuple(obs)
            d = {'name': obs[0]}
            for i, a in enumerate(args):
                d[a] = obs[i + 1]
        elif isinstance(obs, dict):
            args = cls[obs['name']].arguments
            if args is None:
                t = obs['name']
            else:
                t = tuple([obs['name']] + [obs[a] for a in args])
            d = obs
        if format == 'tuple':
            return t
        elif format == 'list':
            return list(t)
        elif format == 'dict':
            return d

    def set_prediction(self, prediction):
        self.prediction = prediction

    def prediction_central(self, constraints_obj, wc_obj, *args, **kwargs):
        return self.prediction.get_central(constraints_obj, wc_obj, *args, **kwargs)

    def prediction_par(self, par_dict, wc_obj, *args, **kwargs):
        return self.prediction.get_par(par_dict, wc_obj, *args, **kwargs)

    def add_taxonomy(self, taxonomy_string):
        """Add a metadata taxonomy for the observable.

        `taxonomy_string` has to be a string of the form
        'Category :: Subcategory :: Subsubcategory'
        etc. LaTeX code is allowed. One observable can also have multiple
        taxonomies (e.g. 'Animal :: Cat' and 'Pet :: Favourite Pet')"""
        taxonomy_list = taxonomy_string.split(' :: ') + [self.name]
        t = self.__class__.taxonomy
        for node in taxonomy_list:
            t = t[node]

    @classmethod
    def taxonomy_dict(cls):
        """Return the hierarchical metadata taxonomy as a nested dictionary."""
        return dicts(cls.taxonomy)

    @classmethod
    def from_function(cls, name, observables, function):
        """Instantiate an observable object and the corresponding Prediction
        object for an observable that is defined as a mathematical function
        of two or more existing observables with existing predictions.

        Parameters:
        -----------

        - name: string name of the new observable
        - observables: list of string names of the observables to be combined
        - function: function of the observables. The number of arguments must
          match the number of observables

        Example:
        --------

        For two existing observables 'my_obs_1' and 'my_obs_2', a new observable
        that is defined as the difference between the two can be defined as

        ```
        Observable.from_function('my_obs_1_2_diff',
                                 ['my_obs_1', 'my_obs_2'],
                                 lambda x, y: x - y)
        ```
        """
        for observable in observables:
            try:
                Observable[observable]
            except KeyError:
                raise ValueError("The observable " + observable + " does not exist")
            assert Observable[observable].arguments == Observable[observables[0]].arguments, \
                "Only observables depending on the same arguments can be combined"
            assert Observable[observable].prediction is not None, \
                "The observable {} does not have a prediction yet".format(observable)
        obs_obj = cls(name, arguments=Observable[observables[0]].arguments)
        pfcts = [Observable[observable].prediction.function
                 for observable in observables]
        def pfct(*args, **kwargs):
            return function(*[f(*args, **kwargs) for f in pfcts])
        Prediction(name, pfct)
        return obs_obj

    def get_measurements(self):
        r"""Return the names of measurements that constrain the observable."""
        ms = []
        for name, m in Measurement.instances.items():
            if self.name in m.all_parameters:
                ms.append(name)
            else:
                for obs in m.all_parameters:
                    if isinstance(obs, tuple):
                        if obs[0] == self.name:
                            ms.append(name)
                            break
        return ms

    def theory_citations(self, *args, **kwargs):
        """Return a set of theory papers (in the form of INSPIRE texkeys) to
        cite for the theory prediction for an observable.

        Arguments are passed to the observable and are necessary,
        depending on the observable (e.g. $q^2$-dependent observables).
        """
        with flavio.citations.collect() as citations:
            flavio.sm_prediction(self.name, *args, **kwargs)
        return citations.set

Ancestors (in MRO)

Class variables

var instances

var taxonomy

Static methods

def __init__(

self, name, arguments=None)

Initialize self. See help(type(self)) for accurate signature.

def __init__(self, name, arguments=None):
    super().__init__(name)
    if not hasattr(self.__class__, 'taxonomy'):
        self.__class__.taxonomy = tree()
    self.arguments = arguments
    self.prediction = None
    self.tex = ''

def add_taxonomy(

self, taxonomy_string)

Add a metadata taxonomy for the observable.

taxonomy_string has to be a string of the form 'Category :: Subcategory :: Subsubcategory' etc. LaTeX code is allowed. One observable can also have multiple taxonomies (e.g. 'Animal :: Cat' and 'Pet :: Favourite Pet')

def add_taxonomy(self, taxonomy_string):
    """Add a metadata taxonomy for the observable.
    `taxonomy_string` has to be a string of the form
    'Category :: Subcategory :: Subsubcategory'
    etc. LaTeX code is allowed. One observable can also have multiple
    taxonomies (e.g. 'Animal :: Cat' and 'Pet :: Favourite Pet')"""
    taxonomy_list = taxonomy_string.split(' :: ') + [self.name]
    t = self.__class__.taxonomy
    for node in taxonomy_list:
        t = t[node]

def get_measurements(

self)

Return the names of measurements that constrain the observable.

def get_measurements(self):
    r"""Return the names of measurements that constrain the observable."""
    ms = []
    for name, m in Measurement.instances.items():
        if self.name in m.all_parameters:
            ms.append(name)
        else:
            for obs in m.all_parameters:
                if isinstance(obs, tuple):
                    if obs[0] == self.name:
                        ms.append(name)
                        break
    return ms

def prediction_central(

self, constraints_obj, wc_obj, *args, **kwargs)

def prediction_central(self, constraints_obj, wc_obj, *args, **kwargs):
    return self.prediction.get_central(constraints_obj, wc_obj, *args, **kwargs)

def prediction_par(

self, par_dict, wc_obj, *args, **kwargs)

def prediction_par(self, par_dict, wc_obj, *args, **kwargs):
    return self.prediction.get_par(par_dict, wc_obj, *args, **kwargs)

def set_description(

self, description)

def set_description(self, description):
    self.description = description

def set_prediction(

self, prediction)

def set_prediction(self, prediction):
    self.prediction = prediction

def theory_citations(

self, *args, **kwargs)

Return a set of theory papers (in the form of INSPIRE texkeys) to cite for the theory prediction for an observable.

Arguments are passed to the observable and are necessary, depending on the observable (e.g. $q^2$-dependent observables).

def theory_citations(self, *args, **kwargs):
    """Return a set of theory papers (in the form of INSPIRE texkeys) to
    cite for the theory prediction for an observable.
    Arguments are passed to the observable and are necessary,
    depending on the observable (e.g. $q^2$-dependent observables).
    """
    with flavio.citations.collect() as citations:
        flavio.sm_prediction(self.name, *args, **kwargs)
    return citations.set

Instance variables

var arguments

var prediction

var tex

Methods

def argument_format(

cls, obs, format='tuple')

Class method: takes as input an observable name and numerical values for the arguements (if any) and returns as output the same in a specific form as specified by format: 'tuple' (default), 'list', or 'dict'.

Example inputs: - ('dBR/dq2(B0->Denu)', 1) - {'name': 'dBR/dq2(B0->Denu)', 'q2': 1}

Output: tuple: ('dBR/dq2(B0->Denu)', 1) list: ('dBR/dq2(B0->Denu)', 1) dict: {'name': 'dBR/dq2(B0->Denu)', 'q2': 1}

For a string input for observables that don't have arguments: - 'eps_K'

Output: tuple: 'eps_K' list: 'eps_K' dict: {'name': 'eps_K'}

@classmethod
def argument_format(cls, obs, format='tuple'):
    """Class method: takes as input an observable name and numerical values
    for the arguements (if any) and returns as output the same in a specific
    form as specified by `format`: 'tuple' (default), 'list', or 'dict'.
    Example inputs:
    - ('dBR/dq2(B0->Denu)', 1)
    - {'name': 'dBR/dq2(B0->Denu)', 'q2': 1}
    Output:
    tuple: ('dBR/dq2(B0->Denu)', 1)
    list: ('dBR/dq2(B0->Denu)', 1)
    dict: {'name': 'dBR/dq2(B0->Denu)', 'q2': 1}
    For a string input for observables that don't have arguments:
    - 'eps_K'
    Output:
    tuple: 'eps_K'
    list: 'eps_K'
    dict: {'name': 'eps_K'}
    """
    if isinstance(obs, str):
        if cls[obs].arguments is not None:
            raise ValueError("Arguments missing for {}".format(obs))
        if format == 'dict':
            return {'name': obs}
        else:
            return obs
    elif isinstance(obs, (tuple, list)):
        args = cls[obs[0]].arguments
        if args is None or len(args) != len(obs) - 1:
            raise ValueError("Wrong number of arguments for {}".format(obs[0]))
        t = tuple(obs)
        d = {'name': obs[0]}
        for i, a in enumerate(args):
            d[a] = obs[i + 1]
    elif isinstance(obs, dict):
        args = cls[obs['name']].arguments
        if args is None:
            t = obs['name']
        else:
            t = tuple([obs['name']] + [obs[a] for a in args])
        d = obs
    if format == 'tuple':
        return t
    elif format == 'list':
        return list(t)
    elif format == 'dict':
        return d

def clear_all(

cls)

Delete all instances.

@classmethod
def clear_all(cls):
    """Delete all instances."""
    cls.instances = OrderedDict()

def del_instance(

cls, name)

@classmethod
def del_instance(cls, name):
    del cls.instances[name]

def find(

cls, regex)

Find all instance names matching the regular expression regex.

@classmethod
def find(cls, regex):
    """Find all instance names matching the regular expression `regex`."""
    rc = re.compile(regex)
    return list(filter(rc.search, cls.instances))

def from_function(

cls, name, observables, function)

Instantiate an observable object and the corresponding Prediction object for an observable that is defined as a mathematical function of two or more existing observables with existing predictions.

Parameters:

  • name: string name of the new observable
  • observables: list of string names of the observables to be combined
  • function: function of the observables. The number of arguments must match the number of observables

Example:

For two existing observables 'my_obs_1' and 'my_obs_2', a new observable that is defined as the difference between the two can be defined as

Observable.from_function('my_obs_1_2_diff', ['my_obs_1', 'my_obs_2'], lambda x, y: x - y)

@classmethod
def from_function(cls, name, observables, function):
    """Instantiate an observable object and the corresponding Prediction
    object for an observable that is defined as a mathematical function
    of two or more existing observables with existing predictions.
    Parameters:
    -----------
    - name: string name of the new observable
    - observables: list of string names of the observables to be combined
    - function: function of the observables. The number of arguments must
      match the number of observables
    Example:
    --------
    For two existing observables 'my_obs_1' and 'my_obs_2', a new observable
    that is defined as the difference between the two can be defined as
    ```
    Observable.from_function('my_obs_1_2_diff',
                             ['my_obs_1', 'my_obs_2'],
                             lambda x, y: x - y)
    ```
    """
    for observable in observables:
        try:
            Observable[observable]
        except KeyError:
            raise ValueError("The observable " + observable + " does not exist")
        assert Observable[observable].arguments == Observable[observables[0]].arguments, \
            "Only observables depending on the same arguments can be combined"
        assert Observable[observable].prediction is not None, \
            "The observable {} does not have a prediction yet".format(observable)
    obs_obj = cls(name, arguments=Observable[observables[0]].arguments)
    pfcts = [Observable[observable].prediction.function
             for observable in observables]
    def pfct(*args, **kwargs):
        return function(*[f(*args, **kwargs) for f in pfcts])
    Prediction(name, pfct)
    return obs_obj

def get_instance(

cls, name)

@classmethod
def get_instance(cls, name):
    return cls.instances[name]

def taxonomy_dict(

cls)

Return the hierarchical metadata taxonomy as a nested dictionary.

@classmethod
def taxonomy_dict(cls):
    """Return the hierarchical metadata taxonomy as a nested dictionary."""
    return dicts(cls.taxonomy)

class Parameter

This class holds parameters (e.g. masses and lifetimes). It requires a name string and also allows to set a LaTeX name and description as attributes. Note that numerical values for the Parameters are not attributes of the Parameter class.

Parameters

  • name: string

Attributes

  • tex: string
  • description: string
class Parameter(NamedInstanceClass):
    """This class holds parameters (e.g. masses and lifetimes). It requires a
    name string and also allows to set a LaTeX name and description as
    attributes. Note that numerical values for the Parameters are not attributes
    of the Parameter class.

    Parameters
    ----------
     - name: string

    Attributes
    ----------
     - tex: string
     - description: string
    """

    def __init__(self, name):
        super().__init__(name)
        self.tex = ''

    def __repr__(self):
        return "Parameter('{}')".format(self.name)

    def _repr_markdown_(self):
        md = "### Parameter `{}`\n\n".format(self.name)
        if self.tex:
            md += "Parameter: {}\n\n".format(self.tex)
        if self.description:
            md += "Description: {}\n\n".format(self.description)
        return md

Ancestors (in MRO)

Class variables

var instances

Static methods

def __init__(

self, name)

Initialize self. See help(type(self)) for accurate signature.

def __init__(self, name):
    super().__init__(name)
    self.tex = ''

def set_description(

self, description)

def set_description(self, description):
    self.description = description

Instance variables

var tex

Methods

def clear_all(

cls)

Delete all instances.

@classmethod
def clear_all(cls):
    """Delete all instances."""
    cls.instances = OrderedDict()

def del_instance(

cls, name)

@classmethod
def del_instance(cls, name):
    del cls.instances[name]

def find(

cls, regex)

Find all instance names matching the regular expression regex.

@classmethod
def find(cls, regex):
    """Find all instance names matching the regular expression `regex`."""
    rc = re.compile(regex)
    return list(filter(rc.search, cls.instances))

def get_instance(

cls, name)

@classmethod
def get_instance(cls, name):
    return cls.instances[name]

class ParameterConstraints

Trivial subclass of Constraints that is meant for constraints on theory parameters represented by instances of the Parameter class.

class ParameterConstraints(Constraints):
    """Trivial subclass of `Constraints` that is meant for constraints on
    theory parameters represented by instances of the `Parameter` class.
    """

    def __init__(self):
        super().__init__()

    def read_default(self):
        """Reset the instance and read the default parameters. Data is read
        - from 'data/parameters_metadata.yml'
        - from 'data/parameters_uncorrelated.yml'
        - from 'data/parameters_correlated.yml'
        - from the default PDG data file
        - for B->V form factors
        - for B->P form factors
        - for Lambdab->Lambda form factors
        """
        # import functions to read parameters
        from flavio.parameters import (
            _read_yaml_object_metadata,
            _read_yaml_object_values,
            _read_yaml_object_values_correlated,
            read_pdg
        )

        # reset the instance
        self.__init__()

        # Read the parameter metadata from the default YAML data file
        _read_yaml_object_metadata(pkgutil.get_data('flavio', 'data/parameters_metadata.yml'), self)

        # Read the uncorrelated parameter values from the default YAML data file
        _read_yaml_object_values(pkgutil.get_data('flavio', 'data/parameters_uncorrelated.yml'), self)

        # Read the correlated parameter values from the default YAML data file
        _read_yaml_object_values_correlated(pkgutil.get_data('flavio', 'data/parameters_correlated.yml'), self)

        # Read the parameters from the default PDG data file
        read_pdg(2018, self)

        # Read default parameters for B->V form factors
        flavio.physics.bdecays.formfactors.b_v.bsz_parameters.bsz_load('v2', 'LCSR', ('B->omega', 'B->rho'), self)
        flavio.physics.bdecays.formfactors.b_v.bsz_parameters.bsz_load('v2', 'LCSR-Lattice', ('B->K*', 'Bs->phi', 'Bs->K*'), self)

        # Read default parameters for B->P form factors
        flavio.physics.bdecays.formfactors.b_p.bsz_parameters.gkvd_load('v1', 'LCSR-Lattice', ('B->K', 'B->pi'), self)

        # Read default parameters for Lambdab->Lambda form factors
        flavio.physics.bdecays.formfactors.lambdab_12.lattice_parameters.lattice_load_ho(self)

Ancestors (in MRO)

Static methods

def __init__(

self)

Initialize self. See help(type(self)) for accurate signature.

def __init__(self):
    super().__init__()

def add_constraint(

self, parameters, constraint)

Set the constraint on one or several parameters/observables.

constraint must be an instance of a child of ProbabilityDistribution.

Note that if there already exists a constraint, it will be removed.

def add_constraint(self, parameters, constraint):
    """Set the constraint on one or several parameters/observables.
    `constraint` must be an instance of a child of ProbabilityDistribution.
    Note that if there already exists a constraint, it will be removed."""
    for num, parameter in enumerate(parameters):
        # remove constraint if there is one
        if parameter in self._parameters:
            self.remove_constraint(parameter)
    # populate the dictionaries defined in __init__
        self._parameters[parameter] = (num, constraint)
    self._constraints.append((constraint, parameters))

def copy(

self)

def copy(self):
    # this is to have a .copy() method like for a dictionary
    return copy.deepcopy(self)

def get_1d_errors(

self, N=1000)

def get_1d_errors(self, N=1000):
    warnings.warn("This function was renamed to `get_1d_errors_random` "
                  "in v0.16 and will be removed in the future. ",
                  DeprecationWarning)
    self.get_1d_errors_random(N)

def get_1d_errors_random(

self, N=1000)

Get the Gaussian standard deviation for every parameter/observable obtained by generating N random values.

def get_1d_errors_random(self, N=1000):
    """Get the Gaussian standard deviation for every parameter/observable
    obtained by generating N random values."""
    random_dict_list = [self.get_random_all() for i in range(N)]
    interval_dict = {}
    for k in random_dict_list[0].keys():
        arr = np.array([r[k] for r in random_dict_list])
        interval_dict[k] = np.std(arr)
    return interval_dict

def get_1d_errors_rightleft(

self)

Get the left and right error for every parameter/observable defined such that it contains 68% probability on each side of the central value.

def get_1d_errors_rightleft(self):
    r"""Get the left and right error for every parameter/observable
    defined such that it contains 68% probability on each side of the
    central value."""
    errors_left = [constraint.error_left for constraint, _ in self._constraints]
    errors_right = [constraint.error_right for constraint, _ in self._constraints]
    error_dict = {}
    # now, iterate over the parameters
    for parameter, constraints in self._parameters.items():
        num, constraint = constraints
        idx = ([constraint for constraint, _ in self._constraints]).index(constraint)
        error_dict[parameter] = (np.ravel([errors_right[idx]])[num],
                                 np.ravel([errors_left[idx]])[num])
    return error_dict

def get_central(

self, parameter)

Get the central value of a parameter

def get_central(self, parameter):
    """Get the central value of a parameter"""
    if parameter not in self._parameters.keys():
        raise ValueError('No constraints applied to parameter/observable ' + parameter)
    else:
        num, constraint = self._parameters[parameter]
        cv = constraint.central_value
        try:
            cv = float(cv)
        except (TypeError, ValueError):
            # return the num-th entry of the central value vector
            return cv[num]
        else:
            if num == 0:
                return cv
            else:
                raise ValueError("Something went wrong when getting the central value of {}".format(parameter))

def get_central_all(

self)

Get central values of all constrained parameters.

def get_central_all(self):
    """Get central values of all constrained parameters."""
    return {parameter: self.get_central(parameter) for parameter in self._parameters.keys()}

def get_logprobability_all(

self, par_dict, exclude_parameters=[], delta=False)

Return a dictionary with the logarithm of the probability for each constraint/probability distribution.

Inputs

  • par_dict A dictionary of the form {parameter: value, ...} where parameter is a string and value a float.
  • exclude_parameters (optional) An iterable of strings (default: empty) that specifies parameters that should be ignored. Univariate constraints on this parameter will be skipped, while for multivariate normally distributed constraints, the parameter will be removed from the covariance.
def get_logprobability_all(self, par_dict, exclude_parameters=[], delta=False):
    """Return a dictionary with the logarithm of the probability for each
    constraint/probability distribution.
    Inputs
    ------
    - par_dict
      A dictionary of the form {parameter: value, ...} where parameter
      is a string and value a float.
    - exclude_parameters (optional)
      An iterable of strings (default: empty) that specifies parameters
      that should be ignored. Univariate constraints on this parameter
      will be skipped, while for multivariate normally distributed
      constraints, the parameter will be removed from the covariance.
    """
    prob_dict = {}
    for constraint, parameters in self._constraints:
        # list of constrained parameters except the excluded ones
        p_cons = [p for p in parameters
                  if (p not in exclude_parameters
                  and (parameters.index(p), constraint) == self._parameters.get(p, None))]
        x = [par_dict[p] for p in p_cons]
        if not x:
            # nothing to constrain
            continue
        if len(parameters) == 1:
            # 1D constraints should have a scalar, not a length-1 array
            if not delta:
                prob_dict[constraint] = constraint.logpdf(x[0])
            else:
                prob_dict[constraint] = constraint.delta_logpdf(x[0])
        else:
            # for multivariate distributions
            if len(x) == len(parameters):
                # no parameter has been excluded
                exclude = None
            else:
                exclude = tuple(i for i, p in enumerate(parameters)
                                if p not in p_cons)
            if not delta:
                prob_dict[constraint] = constraint.logpdf(x, exclude=exclude)
            else:
                prob_dict[constraint] = constraint.delta_logpdf(x, exclude=exclude)
    return prob_dict

def get_logprobability_single(

self, parameter, value, delta=False)

Return a dictionary with the logarithm of the probability for each constraint/probability distribution for a given value of a single parameter.

def get_logprobability_single(self, parameter, value, delta=False):
    """Return a dictionary with the logarithm of the probability for each
    constraint/probability distribution for a given value of a
    single parameter.
    """
    num, constraint = self._parameters[parameter]
    parameters = OrderedDict(self._constraints)[constraint]
    if len(parameters) == 1:
        if not delta:
            return constraint.logpdf(value)
        else:
            return constraint.delta_logpdf(value)
    else:
        # for multivariate distributions
        exclude = tuple(i for i, p in enumerate(parameters)
                        if p != parameter)
        if not delta:
            return constraint.logpdf([value], exclude=exclude)
        else:
            return constraint.delta_logpdf([value], exclude=exclude)

def get_random_all(

self, size=None)

Get random values for all constrained parameters where they are distributed according to the probability distribution applied.

If size is not None, the dictionary values will be arrays with length size rather than numbers.

def get_random_all(self, size=None):
    """Get random values for all constrained parameters where they are
    distributed according to the probability distribution applied.
    If `size` is not None, the dictionary values will be arrays with length
    `size` rather than numbers."""
    # first, generate random values for every single one of the constraints
    random_constraints = {constraint: constraint.get_random(size=size)
                          for constraint, _ in self._constraints}
    random_dict = {}
    # now, iterate over the parameters
    for parameter, constraints in self._parameters.items():
        num, constraint = constraints
        carr = random_constraints[constraint]
        if size is None and num == 0 and np.isscalar(carr):
            random_dict[parameter] = carr
        elif size is None and num == 0 and carr.shape == tuple():
            random_dict[parameter] = carr
        elif size is None:
            random_dict[parameter] = carr[num]
        elif carr.shape == (size,) and num == 0:
            random_dict[parameter] = carr
        elif carr.ndim == 2 and carr.shape[0] == size:
            random_dict[parameter] = carr[:, num]
        else:
            raise ValueError("Unexpected error in get_random_all")
    return random_dict

def get_yaml(

self, *args, **kwargs)

Get a YAML string representation of all constraints.

The optional parameter pname allows to customize the name of the key containing the parameter list of each constraint (e.g. 'parameters', 'observables').

def get_yaml(self, *args, **kwargs):
    """Get a YAML string representation of all constraints.
    The optional parameter `pname` allows to customize the name of the key
    containing the parameter list of each constraint (e.g. 'parameters',
    'observables').
    """
    return yaml.dump(self.get_yaml_dict(*args, **kwargs))

def get_yaml_dict(

self, pname='parameters')

Get an ordered dictionary representation of all constraints that can be dumped as YAML string.

The optional parameter pname allows to customize the name of the key containing the parameter list of each constraint (e.g. 'parameters', 'observables').

def get_yaml_dict(self, pname='parameters'):
    """Get an ordered dictionary representation of all constraints that can
    be dumped as YAML string.
    The optional parameter `pname` allows to customize the name of the key
    containing the parameter list of each constraint (e.g. 'parameters',
    'observables').
    """
    data = []
    for constraint, parameters in self._constraints:
        d = OrderedDict()
        d[pname] = [list(p) if isinstance(p, tuple) else p for p in parameters]
        d['values'] = constraint.get_dict(distribution=True,
                                          iterate=True, arraytolist=True)
        data.append(d)
    args = inspect.signature(self.__class__).parameters.keys()
    meta = {k: v for k, v in self.__dict__.items()
            if k[0] != '_' and v != '' and k not in args}
    if not args and not meta:
        return data
    else:
        datameta = OrderedDict()
        if args:
            datameta['arguments'] = {arg: self.__dict__[arg] for arg in args}
        if meta:
            datameta['metadata'] = meta
        datameta['constraints'] = data
        return datameta

def read_default(

self)

Reset the instance and read the default parameters. Data is read - from 'data/parameters_metadata.yml' - from 'data/parameters_uncorrelated.yml' - from 'data/parameters_correlated.yml' - from the default PDG data file - for B->V form factors - for B->P form factors - for Lambdab->Lambda form factors

def read_default(self):
    """Reset the instance and read the default parameters. Data is read
    - from 'data/parameters_metadata.yml'
    - from 'data/parameters_uncorrelated.yml'
    - from 'data/parameters_correlated.yml'
    - from the default PDG data file
    - for B->V form factors
    - for B->P form factors
    - for Lambdab->Lambda form factors
    """
    # import functions to read parameters
    from flavio.parameters import (
        _read_yaml_object_metadata,
        _read_yaml_object_values,
        _read_yaml_object_values_correlated,
        read_pdg
    )
    # reset the instance
    self.__init__()
    # Read the parameter metadata from the default YAML data file
    _read_yaml_object_metadata(pkgutil.get_data('flavio', 'data/parameters_metadata.yml'), self)
    # Read the uncorrelated parameter values from the default YAML data file
    _read_yaml_object_values(pkgutil.get_data('flavio', 'data/parameters_uncorrelated.yml'), self)
    # Read the correlated parameter values from the default YAML data file
    _read_yaml_object_values_correlated(pkgutil.get_data('flavio', 'data/parameters_correlated.yml'), self)
    # Read the parameters from the default PDG data file
    read_pdg(2018, self)
    # Read default parameters for B->V form factors
    flavio.physics.bdecays.formfactors.b_v.bsz_parameters.bsz_load('v2', 'LCSR', ('B->omega', 'B->rho'), self)
    flavio.physics.bdecays.formfactors.b_v.bsz_parameters.bsz_load('v2', 'LCSR-Lattice', ('B->K*', 'Bs->phi', 'Bs->K*'), self)
    # Read default parameters for B->P form factors
    flavio.physics.bdecays.formfactors.b_p.bsz_parameters.gkvd_load('v1', 'LCSR-Lattice', ('B->K', 'B->pi'), self)
    # Read default parameters for Lambdab->Lambda form factors
    flavio.physics.bdecays.formfactors.lambdab_12.lattice_parameters.lattice_load_ho(self)

def remove_constraint(

self, parameter)

Remove existing constraint on a parameter.

def remove_constraint(self, parameter):
    """Remove existing constraint on a parameter."""
    self._parameters.pop(parameter, None)

def remove_constraints(

self, parameter)

def remove_constraints(self, parameter):
    warnings.warn("This function was renamed to `remove_constraint` "
                  "in v0.16 and will be removed in the future.",
                  DeprecationWarning)
    self.remove_constraint(parameter)

def set_constraint(

self, parameter, constraint_string=None, constraint_dict=None)

Set the constraint on a parameter/observable by specifying a string or a dictionary. If several constraints (e.g. several types of uncertainty) are given, the total constraint will be the convolution of the individual distributions. Existing constraints will be removed.

Arguments:

  • parameter: parameter string (or tuple)
  • constraint_string: string specifying the constraint that can be e.g. of the form '1.55(3)(1)' or '4.0±0.1'.
  • constraint_dict: dictionary or list of several dictionaries of the form {'distribution': 'distribution_name', 'arg1': val1, ...}, where 'distribution_name' is a string name associated to each probability distribution (see flavio.statistics.probability.class_from_string) and 'arg1', val1 are argument/value pairs of the arguments of the distribution class's constructor (e.g.central_value, standard_deviation for a normal distribution).

constraint_string and constraint_dict must not be present simultaneously.

def set_constraint(self, parameter, constraint_string=None,
                                    constraint_dict=None):
    r"""Set the constraint on a parameter/observable by specifying a string
    or a dictionary. If several constraints (e.g. several types of
    uncertainty) are given, the total constraint will be the convolution
    of the individual distributions. Existing constraints will be removed.
    Arguments:
    - parameter: parameter string (or tuple)
    - constraint_string: string specifying the constraint that can be e.g.
      of the form `'1.55(3)(1)'` or `'4.0±0.1'`.
    - constraint_dict: dictionary or list of several dictionaries of the
      form `{'distribution': 'distribution_name', 'arg1': val1, ...}`, where
      'distribution_name' is a string name associated to each probability
      distribution (see `flavio.statistics.probability.class_from_string`)
      and `'arg1'`, `val1` are argument/value pairs of the arguments of
      the distribution class's constructor (e.g.`central_value`,
      `standard_deviation` for a normal distribution).
    `constraint_string` and `constraint_dict` must not be present
    simultaneously.
    """
    if constraint_string is not None and constraint_dict is not None:
        raise ValueError("constraint_string and constraint_dict cannot"
                         " be used at the same time.")
    if constraint_string is not None:
        pds = constraints_from_string(constraint_string)
    elif constraint_dict is not None:
        pds = dict2dist(constraint_dict)
    else:
        raise TypeError("Either constraint_string or constraint_dict have"
                        " to be specified.")
    combined_pd = convolve_distributions(pds)
    self.add_constraint([parameter], combined_pd)

Instance variables

var all_parameters

Inheritance: Constraints.all_parameters

Returns a list of all parameters/observables constrained.

Methods

def from_yaml(

cls, stream, *args, **kwargs)

Class method: load constraint from a YAML string or stream.

@classmethod
def from_yaml(cls, stream, *args, **kwargs):
    """Class method: load constraint from a YAML string or stream."""
    data = yaml.safe_load(stream)
    return cls.from_yaml_dict(data, *args, **kwargs)

def from_yaml_dict(

cls, data, pname='parameters', instance=None, *args, **kwargs)

Class method: load constraint from a dictionary or list of dicts.

If it is a dictionary, it should have the form:

```{ 'metadata': {...}, # optional, do set attributes of the instance 'arguments': {...}, # optional, to specify keyword arguments for instantiation, 'constraints': [...], # required, the list of constraints }

Alternatively, the list of constraints can be directly given. This list should have elements in one of the two possible forms:

  1. Dictionary as returned by Probability.get_dict: { pname: [...], # required, list of constrained parameters 'values': { 'distribution': '...', # required, string identifying ProbabilityDistribution, e.g. 'normal' '...': '...', # required, any arguments for the instantiation of the ProbabilityDistribution } }

  2. String representing one or several (to be convolved) constraints: ```{ 'my_parameter': '1.0 ± 0.2 ± 0.1 e-3' }

@classmethod
def from_yaml_dict(cls, data, pname='parameters', instance=None, *args, **kwargs):
    """Class method: load constraint from a dictionary or list of dicts.
    If it is a dictionary, it should have the form:
    ```{
    'metadata': {...},  # optional, do set attributes of the instance
    'arguments': {...},  # optional, to specify keyword arguments for instantiation,
    'constraints': [...],  # required, the list of constraints
    }
    Alternatively, the list of constraints can be directly given.
    This list should have elements in one of the two possible forms:
    1. Dictionary as returned by `Probability.get_dict`:
    ```{
    pname: [...],  # required, list of constrained parameters
    'values': {
        'distribution': '...',  # required, string identifying ProbabilityDistribution, e.g. 'normal'
        '...': '...',  # required, any arguments for the instantiation of the ProbabilityDistribution
        }
    }
    ```
    2. String representing one or several (to be convolved) constraints:
    ```{
    'my_parameter': '1.0 ± 0.2 ± 0.1 e-3'
    }
    """
    if isinstance(data, dict):
        constraints = data['constraints']
        meta = data.get('metadata', {})
        arguments = data['arguments']
        kwargs.update(arguments)
        inst = instance or cls(*args, **kwargs)
        for m in meta:
            inst.__dict__[m] = meta[m]
    else:
        inst = instance or cls(*args, **kwargs)
        constraints = data.copy()
    for c in constraints:
        if pname not in c:
            if 'values' not in c and len(c) == 1:
                # this means we probably have a constraint of the
                # form parameter: constraint_string
                for k, v in c.items():  # this loop runs only once
                    inst.set_constraint(k, v)
                    break  # just to be sure
                continue
            else:
                # in this case something is clearly wrong. Mabye the
                # wrong "pname" was used.
                raise ValueError('Key ' + pname + ' not found. '
                                 'Please check the `pname` argument.')
        else:
            parameters = [tuple(p) if isinstance(p, list) else p for p in c[pname]]
            pds = dict2dist(c['values'])
            combined_pd = convolve_distributions(pds)
            inst.add_constraint(parameters, combined_pd)
    return inst

class Prediction

A prediction is the theoretical prediction for an observable.

class Prediction(object):
    """A prediction is the theoretical prediction for an observable."""

    def __init__(self, observable, function):
        try:
            Observable[observable]
        except KeyError:
            raise ValueError("The observable " + observable + " does not exist")
        self.observable = observable
        self.function = function
        self.observable_obj = Observable[observable]
        self.observable_obj.set_prediction(self)

    def get_central(self, constraints_obj, wc_obj, *args, **kwargs):
        par_dict = constraints_obj.get_central_all()
        fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
        return self.function(fwc_obj, par_dict, *args, **kwargs)

    def get_par(self, par_dict, wc_obj, *args, **kwargs):
        fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
        return self.function(fwc_obj, par_dict, *args, **kwargs)

Ancestors (in MRO)

Static methods

def __init__(

self, observable, function)

Initialize self. See help(type(self)) for accurate signature.

def __init__(self, observable, function):
    try:
        Observable[observable]
    except KeyError:
        raise ValueError("The observable " + observable + " does not exist")
    self.observable = observable
    self.function = function
    self.observable_obj = Observable[observable]
    self.observable_obj.set_prediction(self)

def get_central(

self, constraints_obj, wc_obj, *args, **kwargs)

def get_central(self, constraints_obj, wc_obj, *args, **kwargs):
    par_dict = constraints_obj.get_central_all()
    fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
    return self.function(fwc_obj, par_dict, *args, **kwargs)

def get_par(

self, par_dict, wc_obj, *args, **kwargs)

def get_par(self, par_dict, wc_obj, *args, **kwargs):
    fwc_obj = flavio.WilsonCoefficients.from_wilson(wc_obj, par_dict)
    return self.function(fwc_obj, par_dict, *args, **kwargs)

Instance variables

var function

var observable

var observable_obj

class WilsonCoefficientPriors

class WilsonCoefficientPriors(Constraints):
    """
    """

    def __init__(self):
        super().__init__()

Ancestors (in MRO)

Static methods

def __init__(

self)

Initialize self. See help(type(self)) for accurate signature.

def __init__(self):
    super().__init__()

def add_constraint(

self, parameters, constraint)

Set the constraint on one or several parameters/observables.

constraint must be an instance of a child of ProbabilityDistribution.

Note that if there already exists a constraint, it will be removed.

def add_constraint(self, parameters, constraint):
    """Set the constraint on one or several parameters/observables.
    `constraint` must be an instance of a child of ProbabilityDistribution.
    Note that if there already exists a constraint, it will be removed."""
    for num, parameter in enumerate(parameters):
        # remove constraint if there is one
        if parameter in self._parameters:
            self.remove_constraint(parameter)
    # populate the dictionaries defined in __init__
        self._parameters[parameter] = (num, constraint)
    self._constraints.append((constraint, parameters))

def copy(

self)

def copy(self):
    # this is to have a .copy() method like for a dictionary
    return copy.deepcopy(self)

def get_1d_errors(

self, N=1000)

def get_1d_errors(self, N=1000):
    warnings.warn("This function was renamed to `get_1d_errors_random` "
                  "in v0.16 and will be removed in the future. ",
                  DeprecationWarning)
    self.get_1d_errors_random(N)

def get_1d_errors_random(

self, N=1000)

Get the Gaussian standard deviation for every parameter/observable obtained by generating N random values.

def get_1d_errors_random(self, N=1000):
    """Get the Gaussian standard deviation for every parameter/observable
    obtained by generating N random values."""
    random_dict_list = [self.get_random_all() for i in range(N)]
    interval_dict = {}
    for k in random_dict_list[0].keys():
        arr = np.array([r[k] for r in random_dict_list])
        interval_dict[k] = np.std(arr)
    return interval_dict

def get_1d_errors_rightleft(

self)

Get the left and right error for every parameter/observable defined such that it contains 68% probability on each side of the central value.

def get_1d_errors_rightleft(self):
    r"""Get the left and right error for every parameter/observable
    defined such that it contains 68% probability on each side of the
    central value."""
    errors_left = [constraint.error_left for constraint, _ in self._constraints]
    errors_right = [constraint.error_right for constraint, _ in self._constraints]
    error_dict = {}
    # now, iterate over the parameters
    for parameter, constraints in self._parameters.items():
        num, constraint = constraints
        idx = ([constraint for constraint, _ in self._constraints]).index(constraint)
        error_dict[parameter] = (np.ravel([errors_right[idx]])[num],
                                 np.ravel([errors_left[idx]])[num])
    return error_dict

def get_central(

self, parameter)

Get the central value of a parameter

def get_central(self, parameter):
    """Get the central value of a parameter"""
    if parameter not in self._parameters.keys():
        raise ValueError('No constraints applied to parameter/observable ' + parameter)
    else:
        num, constraint = self._parameters[parameter]
        cv = constraint.central_value
        try:
            cv = float(cv)
        except (TypeError, ValueError):
            # return the num-th entry of the central value vector
            return cv[num]
        else:
            if num == 0:
                return cv
            else:
                raise ValueError("Something went wrong when getting the central value of {}".format(parameter))

def get_central_all(

self)

Get central values of all constrained parameters.

def get_central_all(self):
    """Get central values of all constrained parameters."""
    return {parameter: self.get_central(parameter) for parameter in self._parameters.keys()}

def get_logprobability_all(

self, par_dict, exclude_parameters=[], delta=False)

Return a dictionary with the logarithm of the probability for each constraint/probability distribution.

Inputs

  • par_dict A dictionary of the form {parameter: value, ...} where parameter is a string and value a float.
  • exclude_parameters (optional) An iterable of strings (default: empty) that specifies parameters that should be ignored. Univariate constraints on this parameter will be skipped, while for multivariate normally distributed constraints, the parameter will be removed from the covariance.
def get_logprobability_all(self, par_dict, exclude_parameters=[], delta=False):
    """Return a dictionary with the logarithm of the probability for each
    constraint/probability distribution.
    Inputs
    ------
    - par_dict
      A dictionary of the form {parameter: value, ...} where parameter
      is a string and value a float.
    - exclude_parameters (optional)
      An iterable of strings (default: empty) that specifies parameters
      that should be ignored. Univariate constraints on this parameter
      will be skipped, while for multivariate normally distributed
      constraints, the parameter will be removed from the covariance.
    """
    prob_dict = {}
    for constraint, parameters in self._constraints:
        # list of constrained parameters except the excluded ones
        p_cons = [p for p in parameters
                  if (p not in exclude_parameters
                  and (parameters.index(p), constraint) == self._parameters.get(p, None))]
        x = [par_dict[p] for p in p_cons]
        if not x:
            # nothing to constrain
            continue
        if len(parameters) == 1:
            # 1D constraints should have a scalar, not a length-1 array
            if not delta:
                prob_dict[constraint] = constraint.logpdf(x[0])
            else:
                prob_dict[constraint] = constraint.delta_logpdf(x[0])
        else:
            # for multivariate distributions
            if len(x) == len(parameters):
                # no parameter has been excluded
                exclude = None
            else:
                exclude = tuple(i for i, p in enumerate(parameters)
                                if p not in p_cons)
            if not delta:
                prob_dict[constraint] = constraint.logpdf(x, exclude=exclude)
            else:
                prob_dict[constraint] = constraint.delta_logpdf(x, exclude=exclude)
    return prob_dict

def get_logprobability_single(

self, parameter, value, delta=False)

Return a dictionary with the logarithm of the probability for each constraint/probability distribution for a given value of a single parameter.

def get_logprobability_single(self, parameter, value, delta=False):
    """Return a dictionary with the logarithm of the probability for each
    constraint/probability distribution for a given value of a
    single parameter.
    """
    num, constraint = self._parameters[parameter]
    parameters = OrderedDict(self._constraints)[constraint]
    if len(parameters) == 1:
        if not delta:
            return constraint.logpdf(value)
        else:
            return constraint.delta_logpdf(value)
    else:
        # for multivariate distributions
        exclude = tuple(i for i, p in enumerate(parameters)
                        if p != parameter)
        if not delta:
            return constraint.logpdf([value], exclude=exclude)
        else:
            return constraint.delta_logpdf([value], exclude=exclude)

def get_random_all(

self, size=None)

Get random values for all constrained parameters where they are distributed according to the probability distribution applied.

If size is not None, the dictionary values will be arrays with length size rather than numbers.

def get_random_all(self, size=None):
    """Get random values for all constrained parameters where they are
    distributed according to the probability distribution applied.
    If `size` is not None, the dictionary values will be arrays with length
    `size` rather than numbers."""
    # first, generate random values for every single one of the constraints
    random_constraints = {constraint: constraint.get_random(size=size)
                          for constraint, _ in self._constraints}
    random_dict = {}
    # now, iterate over the parameters
    for parameter, constraints in self._parameters.items():
        num, constraint = constraints
        carr = random_constraints[constraint]
        if size is None and num == 0 and np.isscalar(carr):
            random_dict[parameter] = carr
        elif size is None and num == 0 and carr.shape == tuple():
            random_dict[parameter] = carr
        elif size is None:
            random_dict[parameter] = carr[num]
        elif carr.shape == (size,) and num == 0:
            random_dict[parameter] = carr
        elif carr.ndim == 2 and carr.shape[0] == size:
            random_dict[parameter] = carr[:, num]
        else:
            raise ValueError("Unexpected error in get_random_all")
    return random_dict

def get_yaml(

self, *args, **kwargs)

Get a YAML string representation of all constraints.

The optional parameter pname allows to customize the name of the key containing the parameter list of each constraint (e.g. 'parameters', 'observables').

def get_yaml(self, *args, **kwargs):
    """Get a YAML string representation of all constraints.
    The optional parameter `pname` allows to customize the name of the key
    containing the parameter list of each constraint (e.g. 'parameters',
    'observables').
    """
    return yaml.dump(self.get_yaml_dict(*args, **kwargs))

def get_yaml_dict(

self, pname='parameters')

Get an ordered dictionary representation of all constraints that can be dumped as YAML string.

The optional parameter pname allows to customize the name of the key containing the parameter list of each constraint (e.g. 'parameters', 'observables').

def get_yaml_dict(self, pname='parameters'):
    """Get an ordered dictionary representation of all constraints that can
    be dumped as YAML string.
    The optional parameter `pname` allows to customize the name of the key
    containing the parameter list of each constraint (e.g. 'parameters',
    'observables').
    """
    data = []
    for constraint, parameters in self._constraints:
        d = OrderedDict()
        d[pname] = [list(p) if isinstance(p, tuple) else p for p in parameters]
        d['values'] = constraint.get_dict(distribution=True,
                                          iterate=True, arraytolist=True)
        data.append(d)
    args = inspect.signature(self.__class__).parameters.keys()
    meta = {k: v for k, v in self.__dict__.items()
            if k[0] != '_' and v != '' and k not in args}
    if not args and not meta:
        return data
    else:
        datameta = OrderedDict()
        if args:
            datameta['arguments'] = {arg: self.__dict__[arg] for arg in args}
        if meta:
            datameta['metadata'] = meta
        datameta['constraints'] = data
        return datameta

def remove_constraint(

self, parameter)

Remove existing constraint on a parameter.

def remove_constraint(self, parameter):
    """Remove existing constraint on a parameter."""
    self._parameters.pop(parameter, None)

def remove_constraints(

self, parameter)

def remove_constraints(self, parameter):
    warnings.warn("This function was renamed to `remove_constraint` "
                  "in v0.16 and will be removed in the future.",
                  DeprecationWarning)
    self.remove_constraint(parameter)

def set_constraint(

self, parameter, constraint_string=None, constraint_dict=None)

Set the constraint on a parameter/observable by specifying a string or a dictionary. If several constraints (e.g. several types of uncertainty) are given, the total constraint will be the convolution of the individual distributions. Existing constraints will be removed.

Arguments:

  • parameter: parameter string (or tuple)
  • constraint_string: string specifying the constraint that can be e.g. of the form '1.55(3)(1)' or '4.0±0.1'.
  • constraint_dict: dictionary or list of several dictionaries of the form {'distribution': 'distribution_name', 'arg1': val1, ...}, where 'distribution_name' is a string name associated to each probability distribution (see flavio.statistics.probability.class_from_string) and 'arg1', val1 are argument/value pairs of the arguments of the distribution class's constructor (e.g.central_value, standard_deviation for a normal distribution).

constraint_string and constraint_dict must not be present simultaneously.

def set_constraint(self, parameter, constraint_string=None,
                                    constraint_dict=None):
    r"""Set the constraint on a parameter/observable by specifying a string
    or a dictionary. If several constraints (e.g. several types of
    uncertainty) are given, the total constraint will be the convolution
    of the individual distributions. Existing constraints will be removed.
    Arguments:
    - parameter: parameter string (or tuple)
    - constraint_string: string specifying the constraint that can be e.g.
      of the form `'1.55(3)(1)'` or `'4.0±0.1'`.
    - constraint_dict: dictionary or list of several dictionaries of the
      form `{'distribution': 'distribution_name', 'arg1': val1, ...}`, where
      'distribution_name' is a string name associated to each probability
      distribution (see `flavio.statistics.probability.class_from_string`)
      and `'arg1'`, `val1` are argument/value pairs of the arguments of
      the distribution class's constructor (e.g.`central_value`,
      `standard_deviation` for a normal distribution).
    `constraint_string` and `constraint_dict` must not be present
    simultaneously.
    """
    if constraint_string is not None and constraint_dict is not None:
        raise ValueError("constraint_string and constraint_dict cannot"
                         " be used at the same time.")
    if constraint_string is not None:
        pds = constraints_from_string(constraint_string)
    elif constraint_dict is not None:
        pds = dict2dist(constraint_dict)
    else:
        raise TypeError("Either constraint_string or constraint_dict have"
                        " to be specified.")
    combined_pd = convolve_distributions(pds)
    self.add_constraint([parameter], combined_pd)

Instance variables

var all_parameters

Inheritance: Constraints.all_parameters

Returns a list of all parameters/observables constrained.

Methods

def from_yaml(

cls, stream, *args, **kwargs)

Class method: load constraint from a YAML string or stream.

@classmethod
def from_yaml(cls, stream, *args, **kwargs):
    """Class method: load constraint from a YAML string or stream."""
    data = yaml.safe_load(stream)
    return cls.from_yaml_dict(data, *args, **kwargs)

def from_yaml_dict(

cls, data, pname='parameters', instance=None, *args, **kwargs)

Class method: load constraint from a dictionary or list of dicts.

If it is a dictionary, it should have the form:

```{ 'metadata': {...}, # optional, do set attributes of the instance 'arguments': {...}, # optional, to specify keyword arguments for instantiation, 'constraints': [...], # required, the list of constraints }

Alternatively, the list of constraints can be directly given. This list should have elements in one of the two possible forms:

  1. Dictionary as returned by Probability.get_dict: { pname: [...], # required, list of constrained parameters 'values': { 'distribution': '...', # required, string identifying ProbabilityDistribution, e.g. 'normal' '...': '...', # required, any arguments for the instantiation of the ProbabilityDistribution } }

  2. String representing one or several (to be convolved) constraints: ```{ 'my_parameter': '1.0 ± 0.2 ± 0.1 e-3' }

@classmethod
def from_yaml_dict(cls, data, pname='parameters', instance=None, *args, **kwargs):
    """Class method: load constraint from a dictionary or list of dicts.
    If it is a dictionary, it should have the form:
    ```{
    'metadata': {...},  # optional, do set attributes of the instance
    'arguments': {...},  # optional, to specify keyword arguments for instantiation,
    'constraints': [...],  # required, the list of constraints
    }
    Alternatively, the list of constraints can be directly given.
    This list should have elements in one of the two possible forms:
    1. Dictionary as returned by `Probability.get_dict`:
    ```{
    pname: [...],  # required, list of constrained parameters
    'values': {
        'distribution': '...',  # required, string identifying ProbabilityDistribution, e.g. 'normal'
        '...': '...',  # required, any arguments for the instantiation of the ProbabilityDistribution
        }
    }
    ```
    2. String representing one or several (to be convolved) constraints:
    ```{
    'my_parameter': '1.0 ± 0.2 ± 0.1 e-3'
    }
    """
    if isinstance(data, dict):
        constraints = data['constraints']
        meta = data.get('metadata', {})
        arguments = data['arguments']
        kwargs.update(arguments)
        inst = instance or cls(*args, **kwargs)
        for m in meta:
            inst.__dict__[m] = meta[m]
    else:
        inst = instance or cls(*args, **kwargs)
        constraints = data.copy()
    for c in constraints:
        if pname not in c:
            if 'values' not in c and len(c) == 1:
                # this means we probably have a constraint of the
                # form parameter: constraint_string
                for k, v in c.items():  # this loop runs only once
                    inst.set_constraint(k, v)
                    break  # just to be sure
                continue
            else:
                # in this case something is clearly wrong. Mabye the
                # wrong "pname" was used.
                raise ValueError('Key ' + pname + ' not found. '
                                 'Please check the `pname` argument.')
        else:
            parameters = [tuple(p) if isinstance(p, list) else p for p in c[pname]]
            pds = dict2dist(c['values'])
            combined_pd = convolve_distributions(pds)
            inst.add_constraint(parameters, combined_pd)
    return inst