flavio.physics.bdecays.angular module
Generic $B\to V \ell_1 \bar \ell_2$ helicity amplitudes and angular distribution. Can be used for $B\to V\ell^+\ell^-$, $B\to V\ell\nu$, and lepton flavour violating decays.
r"""Generic $B\to V \ell_1 \bar \ell_2$ helicity amplitudes and angular distribution. Can be used for $B\to V\ell^+\ell^-$, $B\to V\ell\nu$, and lepton flavour violating decays.""" from flavio.physics.bdecays.common import lambda_K from math import sqrt, pi import cmath def transversity_to_helicity(ta): H={} H['0' ,'V'] = -1j * (ta['0_R'] + ta['0_L']) H['0' ,'A'] = -1j * (ta['0_R'] - ta['0_L']) H['pl' ,'V'] = 1j * ((ta['para_R'] + ta['para_L']) + (ta['perp_R'] + ta['perp_L']))/sqrt(2) H['pl' ,'A'] = 1j * ((ta['para_R'] - ta['para_L']) + (ta['perp_R'] - ta['perp_L']))/sqrt(2) H['mi' ,'V'] = 1j * ((ta['para_R'] + ta['para_L']) - (ta['perp_R'] + ta['perp_L']))/sqrt(2) H['mi' ,'A'] = 1j * ((ta['para_R'] - ta['para_L']) - (ta['perp_R'] - ta['perp_L']))/sqrt(2) return H def helicity_amps_v(q2, mB, mV, mqh, mql, ml1, ml2, ff, wc, prefactor): laB = lambda_K(mB**2, mV**2, q2) H = {} H['0','V'] = (4 * 1j * mB * mV)/(sqrt(q2) * (mB+mV)) * ((wc['v']-wc['vp']) * (mB+mV) * ff['A12']+mqh * (wc['7']-wc['7p']) * ff['T23']) H['0','A'] = 4 * 1j * mB * mV/sqrt(q2) * (wc['a']-wc['ap']) * ff['A12'] H['pl','V'] = 1j/(2 * (mB+mV)) * (+(wc['v']+wc['vp']) * sqrt(laB) * ff['V']-(mB+mV)**2 * (wc['v']-wc['vp']) * ff['A1'])+1j * mqh/q2 * (+(wc['7']+wc['7p']) * sqrt(laB) * ff['T1']-(wc['7']-wc['7p']) * (mB**2-mV**2) * ff['T2']) H['mi','V'] = 1j/(2 * (mB+mV)) * (-(wc['v']+wc['vp']) * sqrt(laB) * ff['V']-(mB+mV)**2 * (wc['v']-wc['vp']) * ff['A1'])+1j * mqh/q2 * (-(wc['7']+wc['7p']) * sqrt(laB) * ff['T1']-(wc['7']-wc['7p']) * (mB**2-mV**2) * ff['T2']) H['pl','A'] = 1j/(2 * (mB+mV)) * (+(wc['a']+wc['ap']) * sqrt(laB) * ff['V']-(mB+mV)**2 * (wc['a']-wc['ap']) * ff['A1']) H['mi','A'] = 1j/(2 * (mB+mV)) * (-(wc['a']+wc['ap']) * sqrt(laB) * ff['V']-(mB+mV)**2 * (wc['a']-wc['ap']) * ff['A1']) H['P'] = 1j * sqrt(laB)/2 * ((wc['p']-wc['pp'])/(mqh+mql)+(ml1+ml2)/q2 * (wc['a']-wc['ap'])) * ff['A0'] H['S'] = 1j * sqrt(laB)/2 * ((wc['s']-wc['sp'])/(mqh+mql)+(ml1-ml2)/q2 * (wc['v']-wc['vp'])) * ff['A0'] H['0','T'] = 2 * sqrt(2) * mB * mV/(mB+mV) * (wc['t']+wc['tp']) * ff['T23'] H['0','Tt'] = 2 * mB * mV/(mB+mV) * (wc['t']-wc['tp']) * ff['T23'] H['pl','T'] = 1/(sqrt(2) * sqrt(q2)) * (+(wc['t']-wc['tp']) * sqrt(laB) * ff['T1']-(wc['t']+wc['tp']) * (mB**2-mV**2) * ff['T2']) H['mi','T'] = 1/(sqrt(2) * sqrt(q2)) * (-(wc['t']-wc['tp']) * sqrt(laB) * ff['T1']-(wc['t']+wc['tp']) * (mB**2-mV**2) * ff['T2']) H['pl','Tt'] = 1/(2 * sqrt(q2)) * (+(wc['t']+wc['tp']) * sqrt(laB) * ff['T1']-(wc['t']-wc['tp']) * (mB**2-mV**2) * ff['T2']) H['mi','Tt'] = 1/(2 * sqrt(q2)) * (-(wc['t']+wc['tp']) * sqrt(laB) * ff['T1']-(wc['t']-wc['tp']) * (mB**2-mV**2) * ff['T2']) return {k: prefactor*v for k, v in H.items()} def _Re(z): return z.real def _Im(z): return z.imag def _Co(z): return complex(z).conjugate() def angularcoeffs_general_Gbasis_v(H, q2, mB, mV, mqh, mql, ml1, ml2): laB = lambda_K(mB**2, mV**2, q2) laGa = lambda_K(q2, ml1**2, ml2**2) E1 = sqrt(ml1**2+laGa/(4 * q2)) E2 = sqrt(ml2**2+laGa/(4 * q2)) CH = {k: complex(v).conjugate() for k, v in H.items()} G = {} G[0,0,0] = ( 4/9 * (3 * E1 * E2+laGa/(4 * q2)) * (abs(H['pl','V'])**2+abs(H['mi','V'])**2+abs(H['0','V'])**2+abs(H['pl','A'])**2+abs(H['mi','A'])**2+abs(H['0','A'])**2) +4 * ml1 * ml2/3 * (abs(H['pl','V'])**2+abs(H['mi','V'])**2+abs(H['0','V'])**2-abs(H['pl','A'])**2-abs(H['mi','A'])**2-abs(H['0','A'])**2) +4/3 * (E1 * E2-ml1 * ml2+laGa/(4 * q2)) * abs(H['S'])**2+4/3 * (E1 * E2+ml1 * ml2+laGa/(4 * q2)) * abs(H['P'])**2 +16/9 * (3 * (E1 * E2+ml1 * ml2)-laGa/(4 * q2)) * (abs(H['pl','Tt'])**2+abs(H['mi','Tt'])**2+abs(H['0','Tt'])**2) +8/9 * (3 * (E1 * E2-ml1 * ml2)-laGa/(4 * q2)) * (abs(H['pl','T'])**2+abs(H['mi','T'])**2+abs(H['0','T'])**2) +16/3 * (ml1 * E2+ml2 * E1) * _Im(H['pl','V'] * CH['pl','Tt']+H['mi','V'] * CH['mi','Tt']+H['0','V'] * CH['0','Tt']) +8 * sqrt(2)/3 * (ml1 * E2-ml2 * E1) * _Im(H['pl','A'] * CH['pl','T']+H['mi','A'] * CH['mi','T']+H['0','A'] * CH['0','T'])) G[0,1,0] = (4 * sqrt(laGa)/3 * ( _Re(H['pl','V'] * CH['pl','A']-H['mi','V'] * CH['mi','A']) +2 * sqrt(2)/q2 * (ml1**2-ml2**2) * _Re(H['pl','T'] * CH['pl','Tt']-H['mi','T'] * CH['mi','Tt']) +2 * (ml1+ml2)/sqrt(q2) * _Im(H['pl','A'] * CH['pl','Tt']-H['mi','A'] * CH['mi','Tt']) +sqrt(2)*(ml1-ml2)/sqrt(q2) * _Im(H['pl','V'] * CH['pl','T']-H['mi','V'] * CH['mi','T']) -(ml1-ml2)/sqrt(q2) * _Re(H['0','A'] * CH['P'])-(ml1+ml2)/sqrt(q2) * _Re(H['0','V'] * CH['S']) +_Im(sqrt(2) * H['0','T'] * CH['P']+2 * H['0','Tt'] * CH['S']) )) G[0,2,0] = -2/9 * laGa/q2 * ( -abs(H['pl','V'])**2-abs(H['mi','V'])**2+2 * abs(H['0','V'])**2-abs(H['pl','A'])**2-abs(H['mi','A'])**2+2 * abs(H['0','A'])**2 -2 * (-abs(H['pl','T'])**2-abs(H['mi','T'])**2+2 * abs(H['0','T'])**2)-4 * (-abs(H['pl','Tt'])**2-abs(H['mi','Tt'])**2+2 * abs(H['0','Tt'])**2)) G[2,0,0] = (-4/9 * (3 * E1 * E2+laGa/(4 * q2)) * (abs(H['pl','V'])**2+abs(H['mi','V'])**2-2 * abs(H['0','V'])**2+abs(H['pl','A'])**2+abs(H['mi','A'])**2 -2 * abs(H['0','A'])**2)-4 * ml1 * ml2/3 * (abs(H['pl','V'])**2+abs(H['mi','V'])**2-2 * abs(H['0','V'])**2-abs(H['pl','A'])**2 -abs(H['mi','A'])**2+2 * abs(H['0','A'])**2)+8/3 * (E1 * E2-ml1 * ml2+laGa/(4 * q2)) * abs(H['S'])**2 +8/3 * (E1 * E2+ml1 * ml2+laGa/(4 * q2)) * abs(H['P'])**2 -16/9 * (3 * (E1 * E2+ml1 * ml2)-laGa/(4 * q2)) * (abs(H['pl','Tt'])**2+abs(H['mi','Tt'])**2-2 * abs(H['0','Tt'])**2) -8/9 * (3 * (E1 * E2-ml1 * ml2)-laGa/(4 * q2)) * (abs(H['pl','T'])**2+abs(H['mi','T'])**2-2 * abs(H['0','T'])**2) -16/3 * (ml1 * E2+ml2 * E1) * _Im(H['pl','V'] * CH['pl','Tt']+H['mi','V'] * CH['mi','Tt']-2 * H['0','V'] * CH['0','Tt']) -8 * sqrt(2)/3 * (ml1 * E2-ml2 * E1) * _Im(H['pl','A'] * CH['pl','T']+H['mi','A'] * CH['mi','T']-2 * H['0','A'] * CH['0','T'])) G[2,1,0] = (-4 * sqrt(laGa)/3 * (_Re(H['pl','V'] * CH['pl','A']-H['mi','V'] * CH['mi','A']) +2 * sqrt(2) * (ml1**2-ml2**2)/q2 * _Re(H['pl','T'] * CH['pl','Tt']-H['mi','T'] * CH['mi','Tt']) +2 * (ml1+ml2)/sqrt(q2) * _Im(H['pl','A'] * CH['pl','Tt']-H['mi','A'] * CH['mi','Tt']) +sqrt(2) * (ml1-ml2)/sqrt(q2) * _Im(H['pl','V'] * CH['pl','T']-H['mi','V'] * CH['mi','T']) +2 * (ml1-ml2)/sqrt(q2) * _Re(H['0','A'] * CH['P'])+2 * (ml1+ml2)/sqrt(q2) * _Re(H['0','V'] * CH['S']) -2 * _Im(sqrt(2) * H['0','T'] * CH['P']+2 * H['0','Tt'] * CH['S']))) G[2,2,0] = (-2/9 * laGa/q2 * (abs(H['pl','V'])**2+abs(H['mi','V'])**2+4 * abs(H['0','V'])**2+abs(H['pl','A'])**2+abs(H['mi','A'])**2 +4 * abs(H['0','A'])**2-2 * (abs(H['pl','T'])**2+abs(H['mi','T'])**2+4 * abs(H['0','T'])**2)-4 * (abs(H['pl','Tt'])**2+abs(H['mi','Tt'])**2+4 * abs(H['0','Tt'])**2))) G[2,1,1] = (4/sqrt(3) * sqrt(laGa) * (H['pl','V'] * CH['0','A']+H['pl','A'] * CH['0','V']-H['0','V'] * CH['mi','A']-H['0','A'] * CH['mi','V'] +(ml1+ml2)/sqrt(q2) * (H['pl','V'] * CH['S']+H['S'] * CH['mi','V'])-sqrt(2) * 1j * (H['P'] * CH['mi','T']-H['pl','T'] * CH['P'] +sqrt(2)*(H['S'] * CH['mi','Tt']-H['pl','Tt'] * CH['S'])) +(ml1-ml2)/sqrt(q2) * (H['pl','A'] * CH['P']+H['P'] * CH['mi','A']) -2 * 1j * (ml1+ml2)/sqrt(q2) * (H['pl','A'] * CH['0','Tt']+H['0','Tt'] * CH['mi','A']-H['pl','Tt'] * CH['0','A']-H['0','A'] * CH['mi','Tt']) -sqrt(2) * 1j * (ml1-ml2)/sqrt(q2) * (H['pl','V'] * CH['0','T']+H['0','T'] * CH['mi','V']-H['pl','T'] * CH['0','V']-H['0','V'] * CH['mi','T']) +2 * sqrt(2) * (ml1**2-ml2**2)/q2 * (H['pl','T'] * CH['0','Tt']+H['pl','Tt'] * CH['0','T']-H['0','T'] * CH['mi','Tt']-H['0','Tt'] * CH['mi','T']))) G[2,2,1] = (4/3 * laGa/q2 * (H['pl','V'] * CH['0','V']+H['0','V'] * CH['mi','V']+H['pl','A'] * CH['0','A']+H['0','A'] * CH['mi','A'] -2 * (H['pl','T'] * CH['0','T']+H['0','T'] * CH['mi','T']+2 * (H['pl','Tt'] * CH['0','Tt']+H['0','Tt'] * CH['mi','Tt'])))) G[2,2,2] = -8/3 * laGa/q2 * (H['pl','V'] * CH['mi','V']+H['pl','A'] * CH['mi','A']-2 * (H['pl','T'] * CH['mi','T']+2 * H['pl','Tt'] * CH['mi','Tt'])) prefactor = sqrt(laB)*sqrt(laGa)/(2**9 * pi**3 * mB**3 * q2) return {k: prefactor*v for k, v in G.items()} def angularcoeffs_h_Gbasis_v(phi, H, Htilde, q2, mB, mV, mqh, mql, ml1, ml2): qp = -cmath.exp(1j * phi) # here it is assumed that q/p is a pure phase, as appropriate for B and Bs mixing laB = lambda_K(mB**2, mV**2, q2) laGa = lambda_K(q2, ml1**2, ml2**2) E1 = sqrt(ml1**2+laGa/(4 * q2)) E2 = sqrt(ml2**2+laGa/(4 * q2)) CH = {k: complex(v).conjugate() for k, v in H.items()} CHtilde = {k: complex(v).conjugate() for k, v in Htilde.items()} G = {} G[0,0,0] = ( 4/9 * (3 * E1 * E2+laGa/(4 * q2)) * (2 * _Re(-qp * Htilde['pl','V'] * CH['pl','V'])+2 * _Re(-qp * Htilde['mi','V'] * CH['mi','V'])+2 * _Re(-qp * Htilde['0','V'] * CH['0','V'])+2 * _Re(-qp * Htilde['pl','A'] * CH['pl','A'])+2 * _Re(-qp * Htilde['mi','A'] * CH['mi','A'])+2 * _Re(-qp * Htilde['0','A'] * CH['0','A'])) +4 * ml1 * ml2/3 * (2 * _Re(-qp * Htilde['pl','V'] * CH['pl','V'])+2 * _Re(-qp * Htilde['mi','V'] * CH['mi','V'])+2 * _Re(-qp * Htilde['0','V'] * CH['0','V'])-2 * _Re(-qp * Htilde['pl','A'] * CH['pl','A'])-2 * _Re(-qp * Htilde['mi','A'] * CH['mi','A'])-2 * _Re(-qp * Htilde['0','A'] * CH['0','A'])) +4/3 * (E1 * E2-ml1 * ml2+laGa/(4 * q2)) * 2 * _Re(-qp * Htilde['S'] * CH['S'])+4/3 * (E1 * E2+ml1 * ml2+laGa/(4 * q2)) * 2 * _Re(-qp * Htilde['P'] * CH['P']) +16/9 * (3 * (E1 * E2+ml1 * ml2)-laGa/(4 * q2)) * (2 * _Re(-qp * Htilde['pl','Tt'] * CH['pl','Tt'])+2 * _Re(-qp * Htilde['mi','Tt'] * CH['mi','Tt'])+2 * _Re(-qp * Htilde['0','Tt'] * CH['0','Tt'])) +8/9 * (3 * (E1 * E2-ml1 * ml2)-laGa/(4 * q2)) * (2 * _Re(-qp * Htilde['pl','T'] * CH['pl','T'])+2 * _Re(-qp * Htilde['mi','T'] * CH['mi','T'])+2 * _Re(-qp * Htilde['0','T'] * CH['0','T'])) +16/3 * (ml1 * E2+ml2 * E1) * _Im((-qp * Htilde['pl','V'] * CH['pl','Tt'] + _Co(-qp) * H['pl','V'] * CHtilde['pl','Tt'])+(-qp * Htilde['mi','V'] * CH['mi','Tt'] + _Co(-qp) * H['mi','V'] * CHtilde['mi','Tt'])+(-qp * Htilde['0','V'] * CH['0','Tt'] + _Co(-qp) * H['0','V'] * CHtilde['0','Tt'])) +8 * sqrt(2)/3 * (ml1 * E2-ml2 * E1) * _Im((-qp * Htilde['pl','A'] * CH['pl','T'] + _Co(-qp) * H['pl','A'] * CHtilde['pl','T'])+(-qp * Htilde['mi','A'] * CH['mi','T'] + _Co(-qp) * H['mi','A'] * CHtilde['mi','T'])+(-qp * Htilde['0','A'] * CH['0','T'] + _Co(-qp) * H['0','A'] * CHtilde['0','T']))) G[0,1,0] = (4 * sqrt(laGa)/3 * ( _Re((-qp * Htilde['pl','V'] * CH['pl','A'] + _Co(-qp) * H['pl','V'] * CHtilde['pl','A'])-(-qp * Htilde['mi','V'] * CH['mi','A'] + _Co(-qp) * H['mi','V'] * CHtilde['mi','A'])) +2 * sqrt(2)/q2 * (ml1**2-ml2**2) * _Re((-qp * Htilde['pl','T'] * CH['pl','Tt'] + _Co(-qp) * H['pl','T'] * CHtilde['pl','Tt'])-(-qp * Htilde['mi','T'] * CH['mi','Tt'] + _Co(-qp) * H['mi','T'] * CHtilde['mi','Tt'])) +2 * (ml1+ml2)/sqrt(q2) * _Im((-qp * Htilde['pl','A'] * CH['pl','Tt'] + _Co(-qp) * H['pl','A'] * CHtilde['pl','Tt'])-(-qp * Htilde['mi','A'] * CH['mi','Tt'] + _Co(-qp) * H['mi','A'] * CHtilde['mi','Tt'])) +sqrt(2)*(ml1-ml2)/sqrt(q2) * _Im((-qp * Htilde['pl','V'] * CH['pl','T'] + _Co(-qp) * H['pl','V'] * CHtilde['pl','T'])-(-qp * Htilde['mi','V'] * CH['mi','T'] + _Co(-qp) * H['mi','V'] * CHtilde['mi','T'])) -(ml1-ml2)/sqrt(q2) * _Re((-qp * Htilde['0','A'] * CH['P'] + _Co(-qp) * H['0','A'] * CHtilde['P']))-(ml1+ml2)/sqrt(q2) * _Re((-qp * Htilde['0','V'] * CH['S'] + _Co(-qp) * H['0','V'] * CHtilde['S'])) +_Im(sqrt(2) * (-qp * Htilde['0','T'] * CH['P'] + _Co(-qp) * H['0','T'] * CHtilde['P'])+2 * (-qp * Htilde['0','Tt'] * CH['S'] + _Co(-qp) * H['0','Tt'] * CHtilde['S'])) )) G[0,2,0] = -2/9 * laGa/q2 * ( -2 * _Re(-qp * Htilde['pl','V'] * CH['pl','V'])-2 * _Re(-qp * Htilde['mi','V'] * CH['mi','V'])+2 * 2 * _Re(-qp * Htilde['0','V'] * CH['0','V'])-2 * _Re(-qp * Htilde['pl','A'] * CH['pl','A'])-2 * _Re(-qp * Htilde['mi','A'] * CH['mi','A'])+2 * 2 * _Re(-qp * Htilde['0','A'] * CH['0','A']) -2 * (-2 * _Re(-qp * Htilde['pl','T'] * CH['pl','T'])-2 * _Re(-qp * Htilde['mi','T'] * CH['mi','T'])+2 * 2 * _Re(-qp * Htilde['0','T'] * CH['0','T']))-4 * (-2 * _Re(-qp * Htilde['pl','Tt'] * CH['pl','Tt'])-2 * _Re(-qp * Htilde['mi','Tt'] * CH['mi','Tt'])+2 * 2 * _Re(-qp * Htilde['0','Tt'] * CH['0','Tt']))) G[2,0,0] = (-4/9 * (3 * E1 * E2+laGa/(4 * q2)) * (2 * _Re(-qp * Htilde['pl','V'] * CH['pl','V'])+2 * _Re(-qp * Htilde['mi','V'] * CH['mi','V'])-2 * 2 * _Re(-qp * Htilde['0','V'] * CH['0','V'])+2 * _Re(-qp * Htilde['pl','A'] * CH['pl','A'])+2 * _Re(-qp * Htilde['mi','A'] * CH['mi','A']) -2 * 2 * _Re(-qp * Htilde['0','A'] * CH['0','A']))-4 * ml1 * ml2/3 * (2 * _Re(-qp * Htilde['pl','V'] * CH['pl','V'])+2 * _Re(-qp * Htilde['mi','V'] * CH['mi','V'])-2 * 2 * _Re(-qp * Htilde['0','V'] * CH['0','V'])-2 * _Re(-qp * Htilde['pl','A'] * CH['pl','A']) -2 * _Re(-qp * Htilde['mi','A'] * CH['mi','A'])+2 * 2 * _Re(-qp * Htilde['0','A'] * CH['0','A']))+8/3 * (E1 * E2-ml1 * ml2+laGa/(4 * q2)) * 2 * _Re(-qp * Htilde['S'] * CH['S']) +8/3 * (E1 * E2+ml1 * ml2+laGa/(4 * q2)) * 2 * _Re(-qp * Htilde['P'] * CH['P']) -16/9 * (3 * (E1 * E2+ml1 * ml2)-laGa/(4 * q2)) * (2 * _Re(-qp * Htilde['pl','Tt'] * CH['pl','Tt'])+2 * _Re(-qp * Htilde['mi','Tt'] * CH['mi','Tt'])-2 * 2 * _Re(-qp * Htilde['0','Tt'] * CH['0','Tt'])) -8/9 * (3 * (E1 * E2-ml1 * ml2)-laGa/(4 * q2)) * (2 * _Re(-qp * Htilde['pl','T'] * CH['pl','T'])+2 * _Re(-qp * Htilde['mi','T'] * CH['mi','T'])-2 * 2 * _Re(-qp * Htilde['0','T'] * CH['0','T'])) -16/3 * (ml1 * E2+ml2 * E1) * _Im((-qp * Htilde['pl','V'] * CH['pl','Tt'] + _Co(-qp) * H['pl','V'] * CHtilde['pl','Tt'])+(-qp * Htilde['mi','V'] * CH['mi','Tt'] + _Co(-qp) * H['mi','V'] * CHtilde['mi','Tt'])-2 * (-qp * Htilde['0','V'] * CH['0','Tt'] + _Co(-qp) * H['0','V'] * CHtilde['0','Tt'])) -8 * sqrt(2)/3 * (ml1 * E2-ml2 * E1) * _Im((-qp * Htilde['pl','A'] * CH['pl','T'] + _Co(-qp) * H['pl','A'] * CHtilde['pl','T'])+(-qp * Htilde['mi','A'] * CH['mi','T'] + _Co(-qp) * H['mi','A'] * CHtilde['mi','T'])-2 * (-qp * Htilde['0','A'] * CH['0','T'] + _Co(-qp) * H['0','A'] * CHtilde['0','T']))) G[2,1,0] = (-4 * sqrt(laGa)/3 * (_Re((-qp * Htilde['pl','V'] * CH['pl','A'] + _Co(-qp) * H['pl','V'] * CHtilde['pl','A'])-(-qp * Htilde['mi','V'] * CH['mi','A'] + _Co(-qp) * H['mi','V'] * CHtilde['mi','A'])) +2 * sqrt(2) * (ml1**2-ml2**2)/q2 * _Re((-qp * Htilde['pl','T'] * CH['pl','Tt'] + _Co(-qp) * H['pl','T'] * CHtilde['pl','Tt'])-(-qp * Htilde['mi','T'] * CH['mi','Tt'] + _Co(-qp) * H['mi','T'] * CHtilde['mi','Tt'])) +2 * (ml1+ml2)/sqrt(q2) * _Im((-qp * Htilde['pl','A'] * CH['pl','Tt'] + _Co(-qp) * H['pl','A'] * CHtilde['pl','Tt'])-(-qp * Htilde['mi','A'] * CH['mi','Tt'] + _Co(-qp) * H['mi','A'] * CHtilde['mi','Tt'])) +sqrt(2) * (ml1-ml2)/sqrt(q2) * _Im((-qp * Htilde['pl','V'] * CH['pl','T'] + _Co(-qp) * H['pl','V'] * CHtilde['pl','T'])-(-qp * Htilde['mi','V'] * CH['mi','T'] + _Co(-qp) * H['mi','V'] * CHtilde['mi','T'])) +2 * (ml1-ml2)/sqrt(q2) * _Re((-qp * Htilde['0','A'] * CH['P'] + _Co(-qp) * H['0','A'] * CHtilde['P']))+2 * (ml1+ml2)/sqrt(q2) * _Re((-qp * Htilde['0','V'] * CH['S'] + _Co(-qp) * H['0','V'] * CHtilde['S'])) -2 * _Im(sqrt(2) * (-qp * Htilde['0','T'] * CH['P'] + _Co(-qp) * H['0','T'] * CHtilde['P'])+2 * (-qp * Htilde['0','Tt'] * CH['S'] + _Co(-qp) * H['0','Tt'] * CHtilde['S'])))) G[2,2,0] = (-2/9 * laGa/q2 * (2 * _Re(-qp * Htilde['pl','V'] * CH['pl','V'])+2 * _Re(-qp * Htilde['mi','V'] * CH['mi','V'])+4 * 2 * _Re(-qp * Htilde['0','V'] * CH['0','V'])+2 * _Re(-qp * Htilde['pl','A'] * CH['pl','A'])+2 * _Re(-qp * Htilde['mi','A'] * CH['mi','A']) +4 * 2 * _Re(-qp * Htilde['0','A'] * CH['0','A'])-2 * (2 * _Re(-qp * Htilde['pl','T'] * CH['pl','T'])+2 * _Re(-qp * Htilde['mi','T'] * CH['mi','T'])+4 * 2 * _Re(-qp * Htilde['0','T'] * CH['0','T']))-4 * (2 * _Re(-qp * Htilde['pl','Tt'] * CH['pl','Tt'])+2 * _Re(-qp * Htilde['mi','Tt'] * CH['mi','Tt'])+4 * 2 * _Re(-qp * Htilde['0','Tt'] * CH['0','Tt'])))) G[2,1,1] = (4/sqrt(3) * sqrt(laGa) * ((-qp * Htilde['pl','V'] * CH['0','A'] + _Co(-qp) * H['pl','V'] * CHtilde['0','A'])+(-qp * Htilde['pl','A'] * CH['0','V'] + _Co(-qp) * H['pl','A'] * CHtilde['0','V'])-(-qp * Htilde['0','V'] * CH['mi','A'] + _Co(-qp) * H['0','V'] * CHtilde['mi','A'])-(-qp * Htilde['0','A'] * CH['mi','V'] + _Co(-qp) * H['0','A'] * CHtilde['mi','V']) +(ml1+ml2)/sqrt(q2) * ((-qp * Htilde['pl','V'] * CH['S'] + _Co(-qp) * H['pl','V'] * CHtilde['S'])+(-qp * Htilde['S'] * CH['mi','V'] + _Co(-qp) * H['S'] * CHtilde['mi','V']))-sqrt(2) * 1j * ((-qp * Htilde['P'] * CH['mi','T'] + _Co(-qp) * H['P'] * CHtilde['mi','T'])-(-qp * Htilde['pl','T'] * CH['P'] + _Co(-qp) * H['pl','T'] * CHtilde['P']) +sqrt(2)*((-qp * Htilde['S'] * CH['mi','Tt'] + _Co(-qp) * H['S'] * CHtilde['mi','Tt'])-(-qp * Htilde['pl','Tt'] * CH['S'] + _Co(-qp) * H['pl','Tt'] * CHtilde['S']))) +(ml1-ml2)/sqrt(q2) * ((-qp * Htilde['pl','A'] * CH['P'] + _Co(-qp) * H['pl','A'] * CHtilde['P'])+(-qp * Htilde['P'] * CH['mi','A'] + _Co(-qp) * H['P'] * CHtilde['mi','A'])) -2 * 1j * (ml1+ml2)/sqrt(q2) * ((-qp * Htilde['pl','A'] * CH['0','Tt'] + _Co(-qp) * H['pl','A'] * CHtilde['0','Tt'])+(-qp * Htilde['0','Tt'] * CH['mi','A'] + _Co(-qp) * H['0','Tt'] * CHtilde['mi','A'])-(-qp * Htilde['pl','Tt'] * CH['0','A'] + _Co(-qp) * H['pl','Tt'] * CHtilde['0','A'])-(-qp * Htilde['0','A'] * CH['mi','Tt'] + _Co(-qp) * H['0','A'] * CHtilde['mi','Tt'])) -sqrt(2) * 1j * (ml1-ml2)/sqrt(q2) * ((-qp * Htilde['pl','V'] * CH['0','T'] + _Co(-qp) * H['pl','V'] * CHtilde['0','T'])+(-qp * Htilde['0','T'] * CH['mi','V'] + _Co(-qp) * H['0','T'] * CHtilde['mi','V'])-(-qp * Htilde['pl','T'] * CH['0','V'] + _Co(-qp) * H['pl','T'] * CHtilde['0','V'])-(-qp * Htilde['0','V'] * CH['mi','T'] + _Co(-qp) * H['0','V'] * CHtilde['mi','T'])) +2 * sqrt(2) * (ml1**2-ml2**2)/q2 * ((-qp * Htilde['pl','T'] * CH['0','Tt'] + _Co(-qp) * H['pl','T'] * CHtilde['0','Tt'])+(-qp * Htilde['pl','Tt'] * CH['0','T'] + _Co(-qp) * H['pl','Tt'] * CHtilde['0','T'])-(-qp * Htilde['0','T'] * CH['mi','Tt'] + _Co(-qp) * H['0','T'] * CHtilde['mi','Tt'])-(-qp * Htilde['0','Tt'] * CH['mi','T'] + _Co(-qp) * H['0','Tt'] * CHtilde['mi','T'])))) G[2,2,1] = (4/3 * laGa/q2 * ((-qp * Htilde['pl','V'] * CH['0','V'] + _Co(-qp) * H['pl','V'] * CHtilde['0','V'])+(-qp * Htilde['0','V'] * CH['mi','V'] + _Co(-qp) * H['0','V'] * CHtilde['mi','V'])+(-qp * Htilde['pl','A'] * CH['0','A'] + _Co(-qp) * H['pl','A'] * CHtilde['0','A'])+(-qp * Htilde['0','A'] * CH['mi','A'] + _Co(-qp) * H['0','A'] * CHtilde['mi','A']) -2 * ((-qp * Htilde['pl','T'] * CH['0','T'] + _Co(-qp) * H['pl','T'] * CHtilde['0','T'])+(-qp * Htilde['0','T'] * CH['mi','T'] + _Co(-qp) * H['0','T'] * CHtilde['mi','T'])+2 * ((-qp * Htilde['pl','Tt'] * CH['0','Tt'] + _Co(-qp) * H['pl','Tt'] * CHtilde['0','Tt'])+(-qp * Htilde['0','Tt'] * CH['mi','Tt'] + _Co(-qp) * H['0','Tt'] * CHtilde['mi','Tt']))))) G[2,2,2] = -8/3 * laGa/q2 * ((-qp * Htilde['pl','V'] * CH['mi','V'] + _Co(-qp) * H['pl','V'] * CHtilde['mi','V'])+(-qp * Htilde['pl','A'] * CH['mi','A'] + _Co(-qp) * H['pl','A'] * CHtilde['mi','A'])-2 * ((-qp * Htilde['pl','T'] * CH['mi','T'] + _Co(-qp) * H['pl','T'] * CHtilde['mi','T'])+2 * (-qp * Htilde['pl','Tt'] * CH['mi','Tt'] + _Co(-qp) * H['pl','Tt'] * CHtilde['mi','Tt']))) prefactor = sqrt(laB)*sqrt(laGa)/(2**9 * pi**3 * mB**3 * q2) return {k: prefactor*v for k, v in G.items()} def G_to_g(G): g = {} g['1s'] = 1/32 * (8 * G[0,0,0] + 2 * G[0,2,0] - 4 * G[2,0,0] - G[2,2,0] ) g['1c'] = 1/16 * (4 * G[0,0,0] + G[0,2,0] + 4 * G[2,0,0] + G[2,2,0] ) g['2s'] = 3/32 * ( 2 * G[0,2,0] - G[2,2,0] ) g['2c'] = 3/16 * (G[0,2,0] + G[2,2,0] ) g['6s'] = 1/8 * ( 2 * G[0,1,0] - G[2,1,0] ) g['6c'] = 1/4 * ( G[0,1,0] + G[2,1,0] ) g[3] = 3/32 * _Re(G[2,2,2]) g[4] = 3/32 * _Re(G[2,2,1]) g[5] = sqrt(3)/16 * _Re(G[2,1,1]) g[7] = sqrt(3)/16 * _Im(G[2,1,1]) g[8] = 3/32 * _Im(G[2,2,1]) g[9] = 3/32 * _Im(G[2,2,2]) return g def angularcoeffs_general_v(*args, **kwargs): G = angularcoeffs_general_Gbasis_v(*args, **kwargs) g = G_to_g(G) signflip = [4, '6s', '6c', 7, 9] J = {k: -8*4/3.*g[k] if k in signflip else 8*4/3.*g[k] for k in g} return J def angularcoeffs_h_v(*args, **kwargs): h = angularcoeffs_h_Gbasis_v(*args, **kwargs) g_h = G_to_g(h) signflip = [4, '6s', '6c', 7, 9] J_h = {k: -8*4/3.*g_h[k] if k in signflip else 8*4/3.*g_h[k] for k in g_h} return J_h def helicity_amps_p(q2, mB, mP, mqh, mql, ml1, ml2, ff, wc, prefactor): laB = lambda_K(mB**2, mP**2, q2) h = {} h['V'] = sqrt(laB)/(2*sqrt(q2)) * ( 2*mqh/(mB+mP)*(wc['7']+wc['7p'])*ff['fT']+(wc['v']+wc['vp'])*ff['f+'] ) h['A'] = sqrt(laB)/(2*sqrt(q2)) * (wc['a']+wc['ap'])*ff['f+'] h['S'] = (mB**2-mP**2)/2. * ff['f0'] * ( (wc['s']+wc['sp'])/(mqh-mql) + (ml1-ml2)/q2*(wc['v']+wc['vp']) ) h['P'] = (mB**2-mP**2)/2. * ff['f0'] * ( (wc['p']+wc['pp'])/(mqh-mql) + (ml1+ml2)/q2*(wc['a']+wc['ap']) ) h['T'] = -1j*sqrt(laB)/(2*(mB+mP)) * (wc['t']-wc['tp']) * ff['fT'] h['Tt'] = -1j*sqrt(laB)/(2*(mB+mP)) * (wc['t']+wc['tp']) * ff['fT'] return {k: prefactor*v for k, v in h.items()} def angularcoeffs_general_Gbasis_p(h, q2, mB, mP, mqh, mql, ml1, ml2): laB = lambda_K(mB**2, mP**2, q2) laGa = lambda_K(q2, ml1**2, ml2**2) E1 = sqrt(ml1**2+laGa/(4 * q2)) E2 = sqrt(ml2**2+laGa/(4 * q2)) G = {} G[0] = ( ( 4*(E1*E2 + ml1*ml2) + laGa/(3*q2) ) * abs(h['V'])**2 + ( 4*(E1*E2 - ml1*ml2) + laGa/(3*q2) ) * abs(h['A'])**2 + ( 4*(E1*E2 - ml1*ml2) + laGa/( q2) ) * abs(h['S'])**2 + ( 4*(E1*E2 + ml1*ml2) + laGa/( q2) ) * abs(h['P'])**2 + 16*(E1*E2 + ml1*ml2 - laGa/(12*q2)) * abs(h['Tt'])**2 + 8*(E1*E2 - ml1*ml2 - laGa/(12*q2)) * abs(h['T'])**2 + 16 * (ml1*E2 + ml2*E1) * _Im( h['V'] * _Co(h['Tt']) ) + 8*sqrt(2)*(ml1*E2 - ml2*E1) * _Im( h['A'] * _Co(h['T']) ) ) G[1] = -4*sqrt(laGa) * ( _Re( (ml1+ml2)/sqrt(q2) * h['V'] * _Co(h['S']) + (ml1-ml2)/sqrt(q2) * h['A'] * _Co(h['P']) ) - _Im( 2 * h['Tt'] * _Co(h['S']) + sqrt(2) * h['T'] * _Co(h['P'])) ) G[2] = -4*laGa/(3*q2) * ( abs(h['V'])**2 + abs(h['A'])**2 - 2*abs(h['T'])**2 - 4*abs(h['Tt'])**2 ) prefactor = sqrt(laB)*sqrt(laGa)/(2**9 * pi**3 * mB**3 * q2) return {k: prefactor*v for k, v in G.items()} def angularcoeffs_general_p(*args, **kwargs): G = angularcoeffs_general_Gbasis_p(*args, **kwargs) J = {} J['a'] = G[0] - G[2]/2. J['b'] = G[1] J['c'] = 3*G[2]/2. return J
Module variables
var pi
Functions
def G_to_g(
G)
def G_to_g(G): g = {} g['1s'] = 1/32 * (8 * G[0,0,0] + 2 * G[0,2,0] - 4 * G[2,0,0] - G[2,2,0] ) g['1c'] = 1/16 * (4 * G[0,0,0] + G[0,2,0] + 4 * G[2,0,0] + G[2,2,0] ) g['2s'] = 3/32 * ( 2 * G[0,2,0] - G[2,2,0] ) g['2c'] = 3/16 * (G[0,2,0] + G[2,2,0] ) g['6s'] = 1/8 * ( 2 * G[0,1,0] - G[2,1,0] ) g['6c'] = 1/4 * ( G[0,1,0] + G[2,1,0] ) g[3] = 3/32 * _Re(G[2,2,2]) g[4] = 3/32 * _Re(G[2,2,1]) g[5] = sqrt(3)/16 * _Re(G[2,1,1]) g[7] = sqrt(3)/16 * _Im(G[2,1,1]) g[8] = 3/32 * _Im(G[2,2,1]) g[9] = 3/32 * _Im(G[2,2,2]) return g
def angularcoeffs_general_Gbasis_p(
h, q2, mB, mP, mqh, mql, ml1, ml2)
def angularcoeffs_general_Gbasis_p(h, q2, mB, mP, mqh, mql, ml1, ml2): laB = lambda_K(mB**2, mP**2, q2) laGa = lambda_K(q2, ml1**2, ml2**2) E1 = sqrt(ml1**2+laGa/(4 * q2)) E2 = sqrt(ml2**2+laGa/(4 * q2)) G = {} G[0] = ( ( 4*(E1*E2 + ml1*ml2) + laGa/(3*q2) ) * abs(h['V'])**2 + ( 4*(E1*E2 - ml1*ml2) + laGa/(3*q2) ) * abs(h['A'])**2 + ( 4*(E1*E2 - ml1*ml2) + laGa/( q2) ) * abs(h['S'])**2 + ( 4*(E1*E2 + ml1*ml2) + laGa/( q2) ) * abs(h['P'])**2 + 16*(E1*E2 + ml1*ml2 - laGa/(12*q2)) * abs(h['Tt'])**2 + 8*(E1*E2 - ml1*ml2 - laGa/(12*q2)) * abs(h['T'])**2 + 16 * (ml1*E2 + ml2*E1) * _Im( h['V'] * _Co(h['Tt']) ) + 8*sqrt(2)*(ml1*E2 - ml2*E1) * _Im( h['A'] * _Co(h['T']) ) ) G[1] = -4*sqrt(laGa) * ( _Re( (ml1+ml2)/sqrt(q2) * h['V'] * _Co(h['S']) + (ml1-ml2)/sqrt(q2) * h['A'] * _Co(h['P']) ) - _Im( 2 * h['Tt'] * _Co(h['S']) + sqrt(2) * h['T'] * _Co(h['P'])) ) G[2] = -4*laGa/(3*q2) * ( abs(h['V'])**2 + abs(h['A'])**2 - 2*abs(h['T'])**2 - 4*abs(h['Tt'])**2 ) prefactor = sqrt(laB)*sqrt(laGa)/(2**9 * pi**3 * mB**3 * q2) return {k: prefactor*v for k, v in G.items()}
def angularcoeffs_general_Gbasis_v(
H, q2, mB, mV, mqh, mql, ml1, ml2)
def angularcoeffs_general_Gbasis_v(H, q2, mB, mV, mqh, mql, ml1, ml2): laB = lambda_K(mB**2, mV**2, q2) laGa = lambda_K(q2, ml1**2, ml2**2) E1 = sqrt(ml1**2+laGa/(4 * q2)) E2 = sqrt(ml2**2+laGa/(4 * q2)) CH = {k: complex(v).conjugate() for k, v in H.items()} G = {} G[0,0,0] = ( 4/9 * (3 * E1 * E2+laGa/(4 * q2)) * (abs(H['pl','V'])**2+abs(H['mi','V'])**2+abs(H['0','V'])**2+abs(H['pl','A'])**2+abs(H['mi','A'])**2+abs(H['0','A'])**2) +4 * ml1 * ml2/3 * (abs(H['pl','V'])**2+abs(H['mi','V'])**2+abs(H['0','V'])**2-abs(H['pl','A'])**2-abs(H['mi','A'])**2-abs(H['0','A'])**2) +4/3 * (E1 * E2-ml1 * ml2+laGa/(4 * q2)) * abs(H['S'])**2+4/3 * (E1 * E2+ml1 * ml2+laGa/(4 * q2)) * abs(H['P'])**2 +16/9 * (3 * (E1 * E2+ml1 * ml2)-laGa/(4 * q2)) * (abs(H['pl','Tt'])**2+abs(H['mi','Tt'])**2+abs(H['0','Tt'])**2) +8/9 * (3 * (E1 * E2-ml1 * ml2)-laGa/(4 * q2)) * (abs(H['pl','T'])**2+abs(H['mi','T'])**2+abs(H['0','T'])**2) +16/3 * (ml1 * E2+ml2 * E1) * _Im(H['pl','V'] * CH['pl','Tt']+H['mi','V'] * CH['mi','Tt']+H['0','V'] * CH['0','Tt']) +8 * sqrt(2)/3 * (ml1 * E2-ml2 * E1) * _Im(H['pl','A'] * CH['pl','T']+H['mi','A'] * CH['mi','T']+H['0','A'] * CH['0','T'])) G[0,1,0] = (4 * sqrt(laGa)/3 * ( _Re(H['pl','V'] * CH['pl','A']-H['mi','V'] * CH['mi','A']) +2 * sqrt(2)/q2 * (ml1**2-ml2**2) * _Re(H['pl','T'] * CH['pl','Tt']-H['mi','T'] * CH['mi','Tt']) +2 * (ml1+ml2)/sqrt(q2) * _Im(H['pl','A'] * CH['pl','Tt']-H['mi','A'] * CH['mi','Tt']) +sqrt(2)*(ml1-ml2)/sqrt(q2) * _Im(H['pl','V'] * CH['pl','T']-H['mi','V'] * CH['mi','T']) -(ml1-ml2)/sqrt(q2) * _Re(H['0','A'] * CH['P'])-(ml1+ml2)/sqrt(q2) * _Re(H['0','V'] * CH['S']) +_Im(sqrt(2) * H['0','T'] * CH['P']+2 * H['0','Tt'] * CH['S']) )) G[0,2,0] = -2/9 * laGa/q2 * ( -abs(H['pl','V'])**2-abs(H['mi','V'])**2+2 * abs(H['0','V'])**2-abs(H['pl','A'])**2-abs(H['mi','A'])**2+2 * abs(H['0','A'])**2 -2 * (-abs(H['pl','T'])**2-abs(H['mi','T'])**2+2 * abs(H['0','T'])**2)-4 * (-abs(H['pl','Tt'])**2-abs(H['mi','Tt'])**2+2 * abs(H['0','Tt'])**2)) G[2,0,0] = (-4/9 * (3 * E1 * E2+laGa/(4 * q2)) * (abs(H['pl','V'])**2+abs(H['mi','V'])**2-2 * abs(H['0','V'])**2+abs(H['pl','A'])**2+abs(H['mi','A'])**2 -2 * abs(H['0','A'])**2)-4 * ml1 * ml2/3 * (abs(H['pl','V'])**2+abs(H['mi','V'])**2-2 * abs(H['0','V'])**2-abs(H['pl','A'])**2 -abs(H['mi','A'])**2+2 * abs(H['0','A'])**2)+8/3 * (E1 * E2-ml1 * ml2+laGa/(4 * q2)) * abs(H['S'])**2 +8/3 * (E1 * E2+ml1 * ml2+laGa/(4 * q2)) * abs(H['P'])**2 -16/9 * (3 * (E1 * E2+ml1 * ml2)-laGa/(4 * q2)) * (abs(H['pl','Tt'])**2+abs(H['mi','Tt'])**2-2 * abs(H['0','Tt'])**2) -8/9 * (3 * (E1 * E2-ml1 * ml2)-laGa/(4 * q2)) * (abs(H['pl','T'])**2+abs(H['mi','T'])**2-2 * abs(H['0','T'])**2) -16/3 * (ml1 * E2+ml2 * E1) * _Im(H['pl','V'] * CH['pl','Tt']+H['mi','V'] * CH['mi','Tt']-2 * H['0','V'] * CH['0','Tt']) -8 * sqrt(2)/3 * (ml1 * E2-ml2 * E1) * _Im(H['pl','A'] * CH['pl','T']+H['mi','A'] * CH['mi','T']-2 * H['0','A'] * CH['0','T'])) G[2,1,0] = (-4 * sqrt(laGa)/3 * (_Re(H['pl','V'] * CH['pl','A']-H['mi','V'] * CH['mi','A']) +2 * sqrt(2) * (ml1**2-ml2**2)/q2 * _Re(H['pl','T'] * CH['pl','Tt']-H['mi','T'] * CH['mi','Tt']) +2 * (ml1+ml2)/sqrt(q2) * _Im(H['pl','A'] * CH['pl','Tt']-H['mi','A'] * CH['mi','Tt']) +sqrt(2) * (ml1-ml2)/sqrt(q2) * _Im(H['pl','V'] * CH['pl','T']-H['mi','V'] * CH['mi','T']) +2 * (ml1-ml2)/sqrt(q2) * _Re(H['0','A'] * CH['P'])+2 * (ml1+ml2)/sqrt(q2) * _Re(H['0','V'] * CH['S']) -2 * _Im(sqrt(2) * H['0','T'] * CH['P']+2 * H['0','Tt'] * CH['S']))) G[2,2,0] = (-2/9 * laGa/q2 * (abs(H['pl','V'])**2+abs(H['mi','V'])**2+4 * abs(H['0','V'])**2+abs(H['pl','A'])**2+abs(H['mi','A'])**2 +4 * abs(H['0','A'])**2-2 * (abs(H['pl','T'])**2+abs(H['mi','T'])**2+4 * abs(H['0','T'])**2)-4 * (abs(H['pl','Tt'])**2+abs(H['mi','Tt'])**2+4 * abs(H['0','Tt'])**2))) G[2,1,1] = (4/sqrt(3) * sqrt(laGa) * (H['pl','V'] * CH['0','A']+H['pl','A'] * CH['0','V']-H['0','V'] * CH['mi','A']-H['0','A'] * CH['mi','V'] +(ml1+ml2)/sqrt(q2) * (H['pl','V'] * CH['S']+H['S'] * CH['mi','V'])-sqrt(2) * 1j * (H['P'] * CH['mi','T']-H['pl','T'] * CH['P'] +sqrt(2)*(H['S'] * CH['mi','Tt']-H['pl','Tt'] * CH['S'])) +(ml1-ml2)/sqrt(q2) * (H['pl','A'] * CH['P']+H['P'] * CH['mi','A']) -2 * 1j * (ml1+ml2)/sqrt(q2) * (H['pl','A'] * CH['0','Tt']+H['0','Tt'] * CH['mi','A']-H['pl','Tt'] * CH['0','A']-H['0','A'] * CH['mi','Tt']) -sqrt(2) * 1j * (ml1-ml2)/sqrt(q2) * (H['pl','V'] * CH['0','T']+H['0','T'] * CH['mi','V']-H['pl','T'] * CH['0','V']-H['0','V'] * CH['mi','T']) +2 * sqrt(2) * (ml1**2-ml2**2)/q2 * (H['pl','T'] * CH['0','Tt']+H['pl','Tt'] * CH['0','T']-H['0','T'] * CH['mi','Tt']-H['0','Tt'] * CH['mi','T']))) G[2,2,1] = (4/3 * laGa/q2 * (H['pl','V'] * CH['0','V']+H['0','V'] * CH['mi','V']+H['pl','A'] * CH['0','A']+H['0','A'] * CH['mi','A'] -2 * (H['pl','T'] * CH['0','T']+H['0','T'] * CH['mi','T']+2 * (H['pl','Tt'] * CH['0','Tt']+H['0','Tt'] * CH['mi','Tt'])))) G[2,2,2] = -8/3 * laGa/q2 * (H['pl','V'] * CH['mi','V']+H['pl','A'] * CH['mi','A']-2 * (H['pl','T'] * CH['mi','T']+2 * H['pl','Tt'] * CH['mi','Tt'])) prefactor = sqrt(laB)*sqrt(laGa)/(2**9 * pi**3 * mB**3 * q2) return {k: prefactor*v for k, v in G.items()}
def angularcoeffs_general_p(
*args, **kwargs)
def angularcoeffs_general_p(*args, **kwargs): G = angularcoeffs_general_Gbasis_p(*args, **kwargs) J = {} J['a'] = G[0] - G[2]/2. J['b'] = G[1] J['c'] = 3*G[2]/2. return J
def angularcoeffs_general_v(
*args, **kwargs)
def angularcoeffs_general_v(*args, **kwargs): G = angularcoeffs_general_Gbasis_v(*args, **kwargs) g = G_to_g(G) signflip = [4, '6s', '6c', 7, 9] J = {k: -8*4/3.*g[k] if k in signflip else 8*4/3.*g[k] for k in g} return J
def angularcoeffs_h_Gbasis_v(
phi, H, Htilde, q2, mB, mV, mqh, mql, ml1, ml2)
def angularcoeffs_h_Gbasis_v(phi, H, Htilde, q2, mB, mV, mqh, mql, ml1, ml2): qp = -cmath.exp(1j * phi) # here it is assumed that q/p is a pure phase, as appropriate for B and Bs mixing laB = lambda_K(mB**2, mV**2, q2) laGa = lambda_K(q2, ml1**2, ml2**2) E1 = sqrt(ml1**2+laGa/(4 * q2)) E2 = sqrt(ml2**2+laGa/(4 * q2)) CH = {k: complex(v).conjugate() for k, v in H.items()} CHtilde = {k: complex(v).conjugate() for k, v in Htilde.items()} G = {} G[0,0,0] = ( 4/9 * (3 * E1 * E2+laGa/(4 * q2)) * (2 * _Re(-qp * Htilde['pl','V'] * CH['pl','V'])+2 * _Re(-qp * Htilde['mi','V'] * CH['mi','V'])+2 * _Re(-qp * Htilde['0','V'] * CH['0','V'])+2 * _Re(-qp * Htilde['pl','A'] * CH['pl','A'])+2 * _Re(-qp * Htilde['mi','A'] * CH['mi','A'])+2 * _Re(-qp * Htilde['0','A'] * CH['0','A'])) +4 * ml1 * ml2/3 * (2 * _Re(-qp * Htilde['pl','V'] * CH['pl','V'])+2 * _Re(-qp * Htilde['mi','V'] * CH['mi','V'])+2 * _Re(-qp * Htilde['0','V'] * CH['0','V'])-2 * _Re(-qp * Htilde['pl','A'] * CH['pl','A'])-2 * _Re(-qp * Htilde['mi','A'] * CH['mi','A'])-2 * _Re(-qp * Htilde['0','A'] * CH['0','A'])) +4/3 * (E1 * E2-ml1 * ml2+laGa/(4 * q2)) * 2 * _Re(-qp * Htilde['S'] * CH['S'])+4/3 * (E1 * E2+ml1 * ml2+laGa/(4 * q2)) * 2 * _Re(-qp * Htilde['P'] * CH['P']) +16/9 * (3 * (E1 * E2+ml1 * ml2)-laGa/(4 * q2)) * (2 * _Re(-qp * Htilde['pl','Tt'] * CH['pl','Tt'])+2 * _Re(-qp * Htilde['mi','Tt'] * CH['mi','Tt'])+2 * _Re(-qp * Htilde['0','Tt'] * CH['0','Tt'])) +8/9 * (3 * (E1 * E2-ml1 * ml2)-laGa/(4 * q2)) * (2 * _Re(-qp * Htilde['pl','T'] * CH['pl','T'])+2 * _Re(-qp * Htilde['mi','T'] * CH['mi','T'])+2 * _Re(-qp * Htilde['0','T'] * CH['0','T'])) +16/3 * (ml1 * E2+ml2 * E1) * _Im((-qp * Htilde['pl','V'] * CH['pl','Tt'] + _Co(-qp) * H['pl','V'] * CHtilde['pl','Tt'])+(-qp * Htilde['mi','V'] * CH['mi','Tt'] + _Co(-qp) * H['mi','V'] * CHtilde['mi','Tt'])+(-qp * Htilde['0','V'] * CH['0','Tt'] + _Co(-qp) * H['0','V'] * CHtilde['0','Tt'])) +8 * sqrt(2)/3 * (ml1 * E2-ml2 * E1) * _Im((-qp * Htilde['pl','A'] * CH['pl','T'] + _Co(-qp) * H['pl','A'] * CHtilde['pl','T'])+(-qp * Htilde['mi','A'] * CH['mi','T'] + _Co(-qp) * H['mi','A'] * CHtilde['mi','T'])+(-qp * Htilde['0','A'] * CH['0','T'] + _Co(-qp) * H['0','A'] * CHtilde['0','T']))) G[0,1,0] = (4 * sqrt(laGa)/3 * ( _Re((-qp * Htilde['pl','V'] * CH['pl','A'] + _Co(-qp) * H['pl','V'] * CHtilde['pl','A'])-(-qp * Htilde['mi','V'] * CH['mi','A'] + _Co(-qp) * H['mi','V'] * CHtilde['mi','A'])) +2 * sqrt(2)/q2 * (ml1**2-ml2**2) * _Re((-qp * Htilde['pl','T'] * CH['pl','Tt'] + _Co(-qp) * H['pl','T'] * CHtilde['pl','Tt'])-(-qp * Htilde['mi','T'] * CH['mi','Tt'] + _Co(-qp) * H['mi','T'] * CHtilde['mi','Tt'])) +2 * (ml1+ml2)/sqrt(q2) * _Im((-qp * Htilde['pl','A'] * CH['pl','Tt'] + _Co(-qp) * H['pl','A'] * CHtilde['pl','Tt'])-(-qp * Htilde['mi','A'] * CH['mi','Tt'] + _Co(-qp) * H['mi','A'] * CHtilde['mi','Tt'])) +sqrt(2)*(ml1-ml2)/sqrt(q2) * _Im((-qp * Htilde['pl','V'] * CH['pl','T'] + _Co(-qp) * H['pl','V'] * CHtilde['pl','T'])-(-qp * Htilde['mi','V'] * CH['mi','T'] + _Co(-qp) * H['mi','V'] * CHtilde['mi','T'])) -(ml1-ml2)/sqrt(q2) * _Re((-qp * Htilde['0','A'] * CH['P'] + _Co(-qp) * H['0','A'] * CHtilde['P']))-(ml1+ml2)/sqrt(q2) * _Re((-qp * Htilde['0','V'] * CH['S'] + _Co(-qp) * H['0','V'] * CHtilde['S'])) +_Im(sqrt(2) * (-qp * Htilde['0','T'] * CH['P'] + _Co(-qp) * H['0','T'] * CHtilde['P'])+2 * (-qp * Htilde['0','Tt'] * CH['S'] + _Co(-qp) * H['0','Tt'] * CHtilde['S'])) )) G[0,2,0] = -2/9 * laGa/q2 * ( -2 * _Re(-qp * Htilde['pl','V'] * CH['pl','V'])-2 * _Re(-qp * Htilde['mi','V'] * CH['mi','V'])+2 * 2 * _Re(-qp * Htilde['0','V'] * CH['0','V'])-2 * _Re(-qp * Htilde['pl','A'] * CH['pl','A'])-2 * _Re(-qp * Htilde['mi','A'] * CH['mi','A'])+2 * 2 * _Re(-qp * Htilde['0','A'] * CH['0','A']) -2 * (-2 * _Re(-qp * Htilde['pl','T'] * CH['pl','T'])-2 * _Re(-qp * Htilde['mi','T'] * CH['mi','T'])+2 * 2 * _Re(-qp * Htilde['0','T'] * CH['0','T']))-4 * (-2 * _Re(-qp * Htilde['pl','Tt'] * CH['pl','Tt'])-2 * _Re(-qp * Htilde['mi','Tt'] * CH['mi','Tt'])+2 * 2 * _Re(-qp * Htilde['0','Tt'] * CH['0','Tt']))) G[2,0,0] = (-4/9 * (3 * E1 * E2+laGa/(4 * q2)) * (2 * _Re(-qp * Htilde['pl','V'] * CH['pl','V'])+2 * _Re(-qp * Htilde['mi','V'] * CH['mi','V'])-2 * 2 * _Re(-qp * Htilde['0','V'] * CH['0','V'])+2 * _Re(-qp * Htilde['pl','A'] * CH['pl','A'])+2 * _Re(-qp * Htilde['mi','A'] * CH['mi','A']) -2 * 2 * _Re(-qp * Htilde['0','A'] * CH['0','A']))-4 * ml1 * ml2/3 * (2 * _Re(-qp * Htilde['pl','V'] * CH['pl','V'])+2 * _Re(-qp * Htilde['mi','V'] * CH['mi','V'])-2 * 2 * _Re(-qp * Htilde['0','V'] * CH['0','V'])-2 * _Re(-qp * Htilde['pl','A'] * CH['pl','A']) -2 * _Re(-qp * Htilde['mi','A'] * CH['mi','A'])+2 * 2 * _Re(-qp * Htilde['0','A'] * CH['0','A']))+8/3 * (E1 * E2-ml1 * ml2+laGa/(4 * q2)) * 2 * _Re(-qp * Htilde['S'] * CH['S']) +8/3 * (E1 * E2+ml1 * ml2+laGa/(4 * q2)) * 2 * _Re(-qp * Htilde['P'] * CH['P']) -16/9 * (3 * (E1 * E2+ml1 * ml2)-laGa/(4 * q2)) * (2 * _Re(-qp * Htilde['pl','Tt'] * CH['pl','Tt'])+2 * _Re(-qp * Htilde['mi','Tt'] * CH['mi','Tt'])-2 * 2 * _Re(-qp * Htilde['0','Tt'] * CH['0','Tt'])) -8/9 * (3 * (E1 * E2-ml1 * ml2)-laGa/(4 * q2)) * (2 * _Re(-qp * Htilde['pl','T'] * CH['pl','T'])+2 * _Re(-qp * Htilde['mi','T'] * CH['mi','T'])-2 * 2 * _Re(-qp * Htilde['0','T'] * CH['0','T'])) -16/3 * (ml1 * E2+ml2 * E1) * _Im((-qp * Htilde['pl','V'] * CH['pl','Tt'] + _Co(-qp) * H['pl','V'] * CHtilde['pl','Tt'])+(-qp * Htilde['mi','V'] * CH['mi','Tt'] + _Co(-qp) * H['mi','V'] * CHtilde['mi','Tt'])-2 * (-qp * Htilde['0','V'] * CH['0','Tt'] + _Co(-qp) * H['0','V'] * CHtilde['0','Tt'])) -8 * sqrt(2)/3 * (ml1 * E2-ml2 * E1) * _Im((-qp * Htilde['pl','A'] * CH['pl','T'] + _Co(-qp) * H['pl','A'] * CHtilde['pl','T'])+(-qp * Htilde['mi','A'] * CH['mi','T'] + _Co(-qp) * H['mi','A'] * CHtilde['mi','T'])-2 * (-qp * Htilde['0','A'] * CH['0','T'] + _Co(-qp) * H['0','A'] * CHtilde['0','T']))) G[2,1,0] = (-4 * sqrt(laGa)/3 * (_Re((-qp * Htilde['pl','V'] * CH['pl','A'] + _Co(-qp) * H['pl','V'] * CHtilde['pl','A'])-(-qp * Htilde['mi','V'] * CH['mi','A'] + _Co(-qp) * H['mi','V'] * CHtilde['mi','A'])) +2 * sqrt(2) * (ml1**2-ml2**2)/q2 * _Re((-qp * Htilde['pl','T'] * CH['pl','Tt'] + _Co(-qp) * H['pl','T'] * CHtilde['pl','Tt'])-(-qp * Htilde['mi','T'] * CH['mi','Tt'] + _Co(-qp) * H['mi','T'] * CHtilde['mi','Tt'])) +2 * (ml1+ml2)/sqrt(q2) * _Im((-qp * Htilde['pl','A'] * CH['pl','Tt'] + _Co(-qp) * H['pl','A'] * CHtilde['pl','Tt'])-(-qp * Htilde['mi','A'] * CH['mi','Tt'] + _Co(-qp) * H['mi','A'] * CHtilde['mi','Tt'])) +sqrt(2) * (ml1-ml2)/sqrt(q2) * _Im((-qp * Htilde['pl','V'] * CH['pl','T'] + _Co(-qp) * H['pl','V'] * CHtilde['pl','T'])-(-qp * Htilde['mi','V'] * CH['mi','T'] + _Co(-qp) * H['mi','V'] * CHtilde['mi','T'])) +2 * (ml1-ml2)/sqrt(q2) * _Re((-qp * Htilde['0','A'] * CH['P'] + _Co(-qp) * H['0','A'] * CHtilde['P']))+2 * (ml1+ml2)/sqrt(q2) * _Re((-qp * Htilde['0','V'] * CH['S'] + _Co(-qp) * H['0','V'] * CHtilde['S'])) -2 * _Im(sqrt(2) * (-qp * Htilde['0','T'] * CH['P'] + _Co(-qp) * H['0','T'] * CHtilde['P'])+2 * (-qp * Htilde['0','Tt'] * CH['S'] + _Co(-qp) * H['0','Tt'] * CHtilde['S'])))) G[2,2,0] = (-2/9 * laGa/q2 * (2 * _Re(-qp * Htilde['pl','V'] * CH['pl','V'])+2 * _Re(-qp * Htilde['mi','V'] * CH['mi','V'])+4 * 2 * _Re(-qp * Htilde['0','V'] * CH['0','V'])+2 * _Re(-qp * Htilde['pl','A'] * CH['pl','A'])+2 * _Re(-qp * Htilde['mi','A'] * CH['mi','A']) +4 * 2 * _Re(-qp * Htilde['0','A'] * CH['0','A'])-2 * (2 * _Re(-qp * Htilde['pl','T'] * CH['pl','T'])+2 * _Re(-qp * Htilde['mi','T'] * CH['mi','T'])+4 * 2 * _Re(-qp * Htilde['0','T'] * CH['0','T']))-4 * (2 * _Re(-qp * Htilde['pl','Tt'] * CH['pl','Tt'])+2 * _Re(-qp * Htilde['mi','Tt'] * CH['mi','Tt'])+4 * 2 * _Re(-qp * Htilde['0','Tt'] * CH['0','Tt'])))) G[2,1,1] = (4/sqrt(3) * sqrt(laGa) * ((-qp * Htilde['pl','V'] * CH['0','A'] + _Co(-qp) * H['pl','V'] * CHtilde['0','A'])+(-qp * Htilde['pl','A'] * CH['0','V'] + _Co(-qp) * H['pl','A'] * CHtilde['0','V'])-(-qp * Htilde['0','V'] * CH['mi','A'] + _Co(-qp) * H['0','V'] * CHtilde['mi','A'])-(-qp * Htilde['0','A'] * CH['mi','V'] + _Co(-qp) * H['0','A'] * CHtilde['mi','V']) +(ml1+ml2)/sqrt(q2) * ((-qp * Htilde['pl','V'] * CH['S'] + _Co(-qp) * H['pl','V'] * CHtilde['S'])+(-qp * Htilde['S'] * CH['mi','V'] + _Co(-qp) * H['S'] * CHtilde['mi','V']))-sqrt(2) * 1j * ((-qp * Htilde['P'] * CH['mi','T'] + _Co(-qp) * H['P'] * CHtilde['mi','T'])-(-qp * Htilde['pl','T'] * CH['P'] + _Co(-qp) * H['pl','T'] * CHtilde['P']) +sqrt(2)*((-qp * Htilde['S'] * CH['mi','Tt'] + _Co(-qp) * H['S'] * CHtilde['mi','Tt'])-(-qp * Htilde['pl','Tt'] * CH['S'] + _Co(-qp) * H['pl','Tt'] * CHtilde['S']))) +(ml1-ml2)/sqrt(q2) * ((-qp * Htilde['pl','A'] * CH['P'] + _Co(-qp) * H['pl','A'] * CHtilde['P'])+(-qp * Htilde['P'] * CH['mi','A'] + _Co(-qp) * H['P'] * CHtilde['mi','A'])) -2 * 1j * (ml1+ml2)/sqrt(q2) * ((-qp * Htilde['pl','A'] * CH['0','Tt'] + _Co(-qp) * H['pl','A'] * CHtilde['0','Tt'])+(-qp * Htilde['0','Tt'] * CH['mi','A'] + _Co(-qp) * H['0','Tt'] * CHtilde['mi','A'])-(-qp * Htilde['pl','Tt'] * CH['0','A'] + _Co(-qp) * H['pl','Tt'] * CHtilde['0','A'])-(-qp * Htilde['0','A'] * CH['mi','Tt'] + _Co(-qp) * H['0','A'] * CHtilde['mi','Tt'])) -sqrt(2) * 1j * (ml1-ml2)/sqrt(q2) * ((-qp * Htilde['pl','V'] * CH['0','T'] + _Co(-qp) * H['pl','V'] * CHtilde['0','T'])+(-qp * Htilde['0','T'] * CH['mi','V'] + _Co(-qp) * H['0','T'] * CHtilde['mi','V'])-(-qp * Htilde['pl','T'] * CH['0','V'] + _Co(-qp) * H['pl','T'] * CHtilde['0','V'])-(-qp * Htilde['0','V'] * CH['mi','T'] + _Co(-qp) * H['0','V'] * CHtilde['mi','T'])) +2 * sqrt(2) * (ml1**2-ml2**2)/q2 * ((-qp * Htilde['pl','T'] * CH['0','Tt'] + _Co(-qp) * H['pl','T'] * CHtilde['0','Tt'])+(-qp * Htilde['pl','Tt'] * CH['0','T'] + _Co(-qp) * H['pl','Tt'] * CHtilde['0','T'])-(-qp * Htilde['0','T'] * CH['mi','Tt'] + _Co(-qp) * H['0','T'] * CHtilde['mi','Tt'])-(-qp * Htilde['0','Tt'] * CH['mi','T'] + _Co(-qp) * H['0','Tt'] * CHtilde['mi','T'])))) G[2,2,1] = (4/3 * laGa/q2 * ((-qp * Htilde['pl','V'] * CH['0','V'] + _Co(-qp) * H['pl','V'] * CHtilde['0','V'])+(-qp * Htilde['0','V'] * CH['mi','V'] + _Co(-qp) * H['0','V'] * CHtilde['mi','V'])+(-qp * Htilde['pl','A'] * CH['0','A'] + _Co(-qp) * H['pl','A'] * CHtilde['0','A'])+(-qp * Htilde['0','A'] * CH['mi','A'] + _Co(-qp) * H['0','A'] * CHtilde['mi','A']) -2 * ((-qp * Htilde['pl','T'] * CH['0','T'] + _Co(-qp) * H['pl','T'] * CHtilde['0','T'])+(-qp * Htilde['0','T'] * CH['mi','T'] + _Co(-qp) * H['0','T'] * CHtilde['mi','T'])+2 * ((-qp * Htilde['pl','Tt'] * CH['0','Tt'] + _Co(-qp) * H['pl','Tt'] * CHtilde['0','Tt'])+(-qp * Htilde['0','Tt'] * CH['mi','Tt'] + _Co(-qp) * H['0','Tt'] * CHtilde['mi','Tt']))))) G[2,2,2] = -8/3 * laGa/q2 * ((-qp * Htilde['pl','V'] * CH['mi','V'] + _Co(-qp) * H['pl','V'] * CHtilde['mi','V'])+(-qp * Htilde['pl','A'] * CH['mi','A'] + _Co(-qp) * H['pl','A'] * CHtilde['mi','A'])-2 * ((-qp * Htilde['pl','T'] * CH['mi','T'] + _Co(-qp) * H['pl','T'] * CHtilde['mi','T'])+2 * (-qp * Htilde['pl','Tt'] * CH['mi','Tt'] + _Co(-qp) * H['pl','Tt'] * CHtilde['mi','Tt']))) prefactor = sqrt(laB)*sqrt(laGa)/(2**9 * pi**3 * mB**3 * q2) return {k: prefactor*v for k, v in G.items()}
def angularcoeffs_h_v(
*args, **kwargs)
def angularcoeffs_h_v(*args, **kwargs): h = angularcoeffs_h_Gbasis_v(*args, **kwargs) g_h = G_to_g(h) signflip = [4, '6s', '6c', 7, 9] J_h = {k: -8*4/3.*g_h[k] if k in signflip else 8*4/3.*g_h[k] for k in g_h} return J_h
def helicity_amps_p(
q2, mB, mP, mqh, mql, ml1, ml2, ff, wc, prefactor)
def helicity_amps_p(q2, mB, mP, mqh, mql, ml1, ml2, ff, wc, prefactor): laB = lambda_K(mB**2, mP**2, q2) h = {} h['V'] = sqrt(laB)/(2*sqrt(q2)) * ( 2*mqh/(mB+mP)*(wc['7']+wc['7p'])*ff['fT']+(wc['v']+wc['vp'])*ff['f+'] ) h['A'] = sqrt(laB)/(2*sqrt(q2)) * (wc['a']+wc['ap'])*ff['f+'] h['S'] = (mB**2-mP**2)/2. * ff['f0'] * ( (wc['s']+wc['sp'])/(mqh-mql) + (ml1-ml2)/q2*(wc['v']+wc['vp']) ) h['P'] = (mB**2-mP**2)/2. * ff['f0'] * ( (wc['p']+wc['pp'])/(mqh-mql) + (ml1+ml2)/q2*(wc['a']+wc['ap']) ) h['T'] = -1j*sqrt(laB)/(2*(mB+mP)) * (wc['t']-wc['tp']) * ff['fT'] h['Tt'] = -1j*sqrt(laB)/(2*(mB+mP)) * (wc['t']+wc['tp']) * ff['fT'] return {k: prefactor*v for k, v in h.items()}
def helicity_amps_v(
q2, mB, mV, mqh, mql, ml1, ml2, ff, wc, prefactor)
def helicity_amps_v(q2, mB, mV, mqh, mql, ml1, ml2, ff, wc, prefactor): laB = lambda_K(mB**2, mV**2, q2) H = {} H['0','V'] = (4 * 1j * mB * mV)/(sqrt(q2) * (mB+mV)) * ((wc['v']-wc['vp']) * (mB+mV) * ff['A12']+mqh * (wc['7']-wc['7p']) * ff['T23']) H['0','A'] = 4 * 1j * mB * mV/sqrt(q2) * (wc['a']-wc['ap']) * ff['A12'] H['pl','V'] = 1j/(2 * (mB+mV)) * (+(wc['v']+wc['vp']) * sqrt(laB) * ff['V']-(mB+mV)**2 * (wc['v']-wc['vp']) * ff['A1'])+1j * mqh/q2 * (+(wc['7']+wc['7p']) * sqrt(laB) * ff['T1']-(wc['7']-wc['7p']) * (mB**2-mV**2) * ff['T2']) H['mi','V'] = 1j/(2 * (mB+mV)) * (-(wc['v']+wc['vp']) * sqrt(laB) * ff['V']-(mB+mV)**2 * (wc['v']-wc['vp']) * ff['A1'])+1j * mqh/q2 * (-(wc['7']+wc['7p']) * sqrt(laB) * ff['T1']-(wc['7']-wc['7p']) * (mB**2-mV**2) * ff['T2']) H['pl','A'] = 1j/(2 * (mB+mV)) * (+(wc['a']+wc['ap']) * sqrt(laB) * ff['V']-(mB+mV)**2 * (wc['a']-wc['ap']) * ff['A1']) H['mi','A'] = 1j/(2 * (mB+mV)) * (-(wc['a']+wc['ap']) * sqrt(laB) * ff['V']-(mB+mV)**2 * (wc['a']-wc['ap']) * ff['A1']) H['P'] = 1j * sqrt(laB)/2 * ((wc['p']-wc['pp'])/(mqh+mql)+(ml1+ml2)/q2 * (wc['a']-wc['ap'])) * ff['A0'] H['S'] = 1j * sqrt(laB)/2 * ((wc['s']-wc['sp'])/(mqh+mql)+(ml1-ml2)/q2 * (wc['v']-wc['vp'])) * ff['A0'] H['0','T'] = 2 * sqrt(2) * mB * mV/(mB+mV) * (wc['t']+wc['tp']) * ff['T23'] H['0','Tt'] = 2 * mB * mV/(mB+mV) * (wc['t']-wc['tp']) * ff['T23'] H['pl','T'] = 1/(sqrt(2) * sqrt(q2)) * (+(wc['t']-wc['tp']) * sqrt(laB) * ff['T1']-(wc['t']+wc['tp']) * (mB**2-mV**2) * ff['T2']) H['mi','T'] = 1/(sqrt(2) * sqrt(q2)) * (-(wc['t']-wc['tp']) * sqrt(laB) * ff['T1']-(wc['t']+wc['tp']) * (mB**2-mV**2) * ff['T2']) H['pl','Tt'] = 1/(2 * sqrt(q2)) * (+(wc['t']+wc['tp']) * sqrt(laB) * ff['T1']-(wc['t']-wc['tp']) * (mB**2-mV**2) * ff['T2']) H['mi','Tt'] = 1/(2 * sqrt(q2)) * (-(wc['t']+wc['tp']) * sqrt(laB) * ff['T1']-(wc['t']-wc['tp']) * (mB**2-mV**2) * ff['T2']) return {k: prefactor*v for k, v in H.items()}
def transversity_to_helicity(
ta)
def transversity_to_helicity(ta): H={} H['0' ,'V'] = -1j * (ta['0_R'] + ta['0_L']) H['0' ,'A'] = -1j * (ta['0_R'] - ta['0_L']) H['pl' ,'V'] = 1j * ((ta['para_R'] + ta['para_L']) + (ta['perp_R'] + ta['perp_L']))/sqrt(2) H['pl' ,'A'] = 1j * ((ta['para_R'] - ta['para_L']) + (ta['perp_R'] - ta['perp_L']))/sqrt(2) H['mi' ,'V'] = 1j * ((ta['para_R'] + ta['para_L']) - (ta['perp_R'] + ta['perp_L']))/sqrt(2) H['mi' ,'A'] = 1j * ((ta['para_R'] - ta['para_L']) - (ta['perp_R'] - ta['perp_L']))/sqrt(2) return H