flavio.physics.bdecays.blnu module
Functions for $B\to\ell\nu$ decays.
r"""Functions for $B\to\ell\nu$ decays.""" import flavio from math import pi from flavio.physics.bdecays.common import meson_quark def br_plnu_general(wc, par, Vij, P, qiqj, lep, nu, mq1, mq2, delta=0): r"""Branching ratio of general $P^+\to\ell^+\nu_\ell$ decay. `Vij` is the appropriate CKM matrix element. `mq1` and `mq2` are the masses of the two quarks forming the meson $P$. `delta` (detaults to 0) is a correction factor to account for different experimental treatment of electromagnetic effects, for instance. """ ml = par['m_'+lep] mP = par['m_'+P] GF = par['GF'] tau = par['tau_'+P] f = par['f_'+P] # Wilson coefficient dependence qqlnu = qiqj + lep + 'nu' + nu rWC = (wc['CVL_'+qqlnu] - wc['CVR_'+qqlnu]) + mP**2/ml/(mq1 + mq2) * (wc['CSR_'+qqlnu] - wc['CSL_'+qqlnu]) N = tau * GF**2 * f**2 / (8*pi) * mP * ml**2 * (1 - ml**2/mP**2)**2 return N * abs(Vij)**2 * abs(rWC)**2 * (1 + delta) def br_blnu(wc_obj, par, B, lep): return sum([_br_blnu(wc_obj,par,B,lep,nu) for nu in ['e', 'mu', 'tau']]) def _br_blnu(wc_obj, par, B, lep, nu): r"""Branching ratio of $B_q\to\ell^+\nu_\ell$.""" bq = meson_quark[B] # CKM element if bq == 'bc': Vxb = flavio.physics.ckm.get_ckm(par)[1,2] elif bq == 'bu': Vxb = flavio.physics.ckm.get_ckm(par)[0,2] # renormalization scale scale = flavio.config['renormalization scale']['bll'] # Wilson coefficients wc = wc_obj.get_wc(bq + lep + 'nu' + nu, scale, par) # add SM contribution to Wilson coefficient if lep == nu: wc['CVL_'+bq+lep+'nu'+nu] += flavio.physics.bdecays.wilsoncoefficients.get_CVLSM(par, scale, nf=5) mb = flavio.physics.running.running.get_mb(par, scale) if B == 'B+': mq = 0 # neglecting up quark mass elif B == 'Bc': mq = flavio.physics.running.running.get_mc(par, scale) return br_plnu_general(wc, par, Vxb, B, bq, lep, nu, mb, mq, delta=0) # function returning function needed for prediction instance def br_blnu_fct(B, lep): def f(wc_obj, par): return br_blnu(wc_obj, par, B, lep) return f # Observable and Prediction instances _tex = {'e': 'e', 'mu': '\mu', 'tau': r'\tau'} _tex_B = {'B+': r'B^+', 'Bc': r'B_c'} for l in ['e', 'mu', 'tau']: for B in ['B+', 'Bc']: _process_tex = _tex_B[B] + r"\to "+_tex[l]+r"^+\nu" _process_taxonomy = r'Process :: $b$ hadron decays :: Leptonic tree-level decays :: $B\to \ell\nu$ :: $' + _process_tex + r"$" _obs_name = "BR("+B+"->"+l+"nu)" _obs = flavio.classes.Observable(_obs_name) _obs.set_description(r"Branching ratio of $" + _process_tex + r"$") _obs.tex = r"$\text{BR}(" + _process_tex + r")$" _obs.add_taxonomy(_process_taxonomy) flavio.classes.Prediction(_obs_name, br_blnu_fct(B, l))
Module variables
var B
var l
var meson_quark
var pi
Functions
def br_blnu(
wc_obj, par, B, lep)
def br_blnu(wc_obj, par, B, lep): return sum([_br_blnu(wc_obj,par,B,lep,nu) for nu in ['e', 'mu', 'tau']])
def br_blnu_fct(
B, lep)
def br_blnu_fct(B, lep): def f(wc_obj, par): return br_blnu(wc_obj, par, B, lep) return f
def br_plnu_general(
wc, par, Vij, P, qiqj, lep, nu, mq1, mq2, delta=0)
Branching ratio of general $P^+\to\ell^+\nu_\ell$ decay.
Vij
is the appropriate CKM matrix element.
mq1
and mq2
are the masses of the two quarks forming the meson $P$.
delta
(detaults to 0) is a correction factor to account for different
experimental treatment of electromagnetic effects, for instance.
def br_plnu_general(wc, par, Vij, P, qiqj, lep, nu, mq1, mq2, delta=0): r"""Branching ratio of general $P^+\to\ell^+\nu_\ell$ decay. `Vij` is the appropriate CKM matrix element. `mq1` and `mq2` are the masses of the two quarks forming the meson $P$. `delta` (detaults to 0) is a correction factor to account for different experimental treatment of electromagnetic effects, for instance. """ ml = par['m_'+lep] mP = par['m_'+P] GF = par['GF'] tau = par['tau_'+P] f = par['f_'+P] # Wilson coefficient dependence qqlnu = qiqj + lep + 'nu' + nu rWC = (wc['CVL_'+qqlnu] - wc['CVR_'+qqlnu]) + mP**2/ml/(mq1 + mq2) * (wc['CSR_'+qqlnu] - wc['CSL_'+qqlnu]) N = tau * GF**2 * f**2 / (8*pi) * mP * ml**2 * (1 - ml**2/mP**2)**2 return N * abs(Vij)**2 * abs(rWC)**2 * (1 + delta)