flavio.physics.bdecays.formfactors.b_p.bsz_parameters module
import numpy as np import json import pkgutil from flavio.classes import Parameter from flavio.statistics.probability import MultivariateNormalDistribution import yaml import re FFs = ["f+", "fT", "f0"] ai = ["a0", "a1", "a2"] ff_a = [(ff, a) for ff in FFs for a in ai] a_ff_string = [a + '_' + ff for ff in FFs for a in ai] tex_a = {'a0': 'a_0', 'a1': 'a_1', 'a2': 'a_2', } tex_ff = {'f+': 'f_+', 'fT': 'f_T', 'f0': 'f_0', } def get_ffpar(filename): f = pkgutil.get_data('flavio.physics', filename) data = json.loads(f.decode('utf-8')) central = np.array([data['central'][ff].get(a, np.nan) for ff, a in ff_a]) unc = np.array([data['uncertainty'][ff].get(a, np.nan) for ff, a in ff_a]) corr = np.array([[data['correlation'][ff1 + ff2].get(a1 + a2, np.nan) for ff1, a1 in ff_a] for ff2, a2 in ff_a]) # delete the parameter a0_f0, which is instead fixed # using the exact kinematical relation f0(0) = f+(0) pos_a0_f0 = ff_a.index(('f0', 'a0')) central = np.delete(central, [pos_a0_f0]) unc = np.delete(unc, [pos_a0_f0]) corr = np.delete(corr, [pos_a0_f0], axis=0) corr = np.delete(corr, [pos_a0_f0], axis=1) return [central, unc, corr] def load_parameters(filename, process, constraints): implementation_name = process + ' BSZ' parameter_names = [implementation_name + ' ' + coeff_name for coeff_name in a_ff_string] # a0_f0 is not treated as independent parameter! parameter_names.remove(implementation_name + ' a0_f0') for parameter_name in parameter_names: try: # check if parameter object already exists p = Parameter[parameter_name] except KeyError: # if not, create a new one p = Parameter(parameter_name) # get LaTeX representation of coefficient and form factor names _tex_a = tex_a[parameter_name.split(' ')[-1].split('_')[0]] _tex_ff = tex_ff[parameter_name.split(' ')[-1].split('_')[-1]] p.tex = r'$' + _tex_a + r'^{' + _tex_ff + r'}$' p.description = r'BSZ form factor parametrization coefficient $' + _tex_a + r'$ of $' + _tex_ff + r'$' else: # if parameter exists, remove existing constraints constraints.remove_constraint(parameter_name) [central, unc, corr] = get_ffpar(filename) constraints.add_constraint(parameter_names, MultivariateNormalDistribution(central_value=central, covariance=np.outer(unc, unc)*corr)) # Resonance masses used in arXiv:1811.00983 resonance_masses_gkvd = { 'B->K': { 'm0': 5.630, 'm+': 5.415, }, 'B->pi': { 'm0': 5.540, 'm+': 5.325, }, 'B->D': { 'm0': 6.420, 'm+': 6.330, }, } def gkvd_load(version, fit, transitions, constraints): """Load the form factor parameters given in arXiv:1811.00983""" for tr in transitions: for m, v in resonance_masses_gkvd[tr].items(): constraints.set_constraint('{} BCL {}'.format(tr, m), v) filename = 'data/arXiv-1811-00983{}/{}_{}.json'.format(version, tr.replace('->', ''), fit) load_parameters(filename, tr, constraints) def load_ffs_eos(filename, dict_name, regex, subst, constraints): f = pkgutil.get_data('flavio.physics', filename) ff_dict = yaml.safe_load(f)[dict_name] observables = ff_dict['observables'] central_values = np.asarray(ff_dict['means']) covariance = np.asarray(ff_dict['covariance']) pattern = re.compile(regex) observables = [pattern.sub(subst, obs) for obs in observables] constraints.add_constraint(observables, MultivariateNormalDistribution(central_value=central_values, covariance=covariance))
Module variables
var FFs
var a_ff_string
var ai
var ff_a
var resonance_masses_gkvd
var tex_a
var tex_ff
Functions
def get_ffpar(
filename)
def get_ffpar(filename): f = pkgutil.get_data('flavio.physics', filename) data = json.loads(f.decode('utf-8')) central = np.array([data['central'][ff].get(a, np.nan) for ff, a in ff_a]) unc = np.array([data['uncertainty'][ff].get(a, np.nan) for ff, a in ff_a]) corr = np.array([[data['correlation'][ff1 + ff2].get(a1 + a2, np.nan) for ff1, a1 in ff_a] for ff2, a2 in ff_a]) # delete the parameter a0_f0, which is instead fixed # using the exact kinematical relation f0(0) = f+(0) pos_a0_f0 = ff_a.index(('f0', 'a0')) central = np.delete(central, [pos_a0_f0]) unc = np.delete(unc, [pos_a0_f0]) corr = np.delete(corr, [pos_a0_f0], axis=0) corr = np.delete(corr, [pos_a0_f0], axis=1) return [central, unc, corr]
def gkvd_load(
version, fit, transitions, constraints)
Load the form factor parameters given in arXiv:1811.00983
def gkvd_load(version, fit, transitions, constraints): """Load the form factor parameters given in arXiv:1811.00983""" for tr in transitions: for m, v in resonance_masses_gkvd[tr].items(): constraints.set_constraint('{} BCL {}'.format(tr, m), v) filename = 'data/arXiv-1811-00983{}/{}_{}.json'.format(version, tr.replace('->', ''), fit) load_parameters(filename, tr, constraints)
def load_ffs_eos(
filename, dict_name, regex, subst, constraints)
def load_ffs_eos(filename, dict_name, regex, subst, constraints): f = pkgutil.get_data('flavio.physics', filename) ff_dict = yaml.safe_load(f)[dict_name] observables = ff_dict['observables'] central_values = np.asarray(ff_dict['means']) covariance = np.asarray(ff_dict['covariance']) pattern = re.compile(regex) observables = [pattern.sub(subst, obs) for obs in observables] constraints.add_constraint(observables, MultivariateNormalDistribution(central_value=central_values, covariance=covariance))
def load_parameters(
filename, process, constraints)
def load_parameters(filename, process, constraints): implementation_name = process + ' BSZ' parameter_names = [implementation_name + ' ' + coeff_name for coeff_name in a_ff_string] # a0_f0 is not treated as independent parameter! parameter_names.remove(implementation_name + ' a0_f0') for parameter_name in parameter_names: try: # check if parameter object already exists p = Parameter[parameter_name] except KeyError: # if not, create a new one p = Parameter(parameter_name) # get LaTeX representation of coefficient and form factor names _tex_a = tex_a[parameter_name.split(' ')[-1].split('_')[0]] _tex_ff = tex_ff[parameter_name.split(' ')[-1].split('_')[-1]] p.tex = r'$' + _tex_a + r'^{' + _tex_ff + r'}$' p.description = r'BSZ form factor parametrization coefficient $' + _tex_a + r'$ of $' + _tex_ff + r'$' else: # if parameter exists, remove existing constraints constraints.remove_constraint(parameter_name) [central, unc, corr] = get_ffpar(filename) constraints.add_constraint(parameter_names, MultivariateNormalDistribution(central_value=central, covariance=np.outer(unc, unc)*corr))