Top

flavio.physics.bdecays.formfactors.b_p.cln module

import flavio
from flavio.physics.bdecays.formfactors import hqet
from flavio.physics.bdecays.formfactors import common
from math import sqrt

process_dict = {}
process_dict['B->D'] = {'B': 'B0', 'q': 'b->c', 'P': 'D+'}


def h_to_f(mB, mP, h, q2):
    """Convert HQET form factors to the standard basis.

    See e.g. arXiv:1309.0301, eq. (31)"""
    ff = {}
    r = mP / mB
    ff['f+'] = ((r + 1) * h['h+'] + (r - 1) * h['h-']) / (2 * sqrt(r))
    fminus = ((r - 1) * h['h+'] + (r + 1) * h['h-']) / (2 * sqrt(r))
    ff['f0'] = ff['f+'] + fminus * q2 / (mB**2 - mP**2)
    ff['fT'] = (r + 1) / (2 * sqrt(r)) * h['hT']
    return ff


def ff(process, q2, par, scale, order_z=3, order_z_slp=2, order_z_sslp=1):
    r"""Central value of $B\to P$ form factors in the lattice convention
    CLN parametrization.

    See arXiv:hep-ph/9712417 and arXiv:1703.05330.
    """
    flavio.citations.register("Caprini:1997mu")
    pd = process_dict[process]
    mB = par['m_' + pd['B']]
    mP = par['m_' + pd['P']]
    w = max((mB**2 + mP**2 - q2) / (2 * mB * mP), 1)
    phqet = hqet.get_hqet_parameters(par)
    ash = phqet['ash']
    epsc = phqet['epsc']
    epsb = phqet['epsb']
    zc = phqet['zc']
    CV1 = hqet.CV1(w, zc)
    CV2 = hqet.CV2(w, zc)
    CV3 = hqet.CV3(w, zc)
    CT1 = hqet.CT1(w, zc)
    CT2 = hqet.CT2(w, zc)
    CT3 = hqet.CT3(w, zc)
    z = common.z(mB, mP, q2, t0='tm')
    rho2 = par['CLN rho2_xi']
    c = par['CLN c_xi']
    xi3 = par['CLN xi3']
    xi = hqet.xi(z, rho2, c, xi3, order_z=order_z)
    L = hqet.Lz(par, w, z, order_z=order_z_slp)
    ell = hqet.ell(par, z, order_z=order_z_sslp)
    h = {}
    h['h+'] = xi * (1 + ash * (CV1 + (w + 1) / 2 * (CV2 + CV3))
                    + (epsc + epsb) * L[1]
                    + epsc**2 * ell[1])
    h['h-'] = xi * (ash * (w + 1) / 2 * (CV2 - CV3)
                    + (epsc - epsb) * L[4]
                    + epsc**2 * ell[4])
    h['hT'] = xi * (1 + ash * (CT1 - CT2 + CT3)
                    + (epsc + epsb) * (L[1] - L[4])
                    + epsc**2 * (ell[1] - ell[4]))
    return h_to_f(mB, mP, h, q2)

Module variables

var process_dict

Functions

def ff(

process, q2, par, scale, order_z=3, order_z_slp=2, order_z_sslp=1)

Central value of $B\to P$ form factors in the lattice convention CLN parametrization.

See arXiv:hep-ph/9712417 and arXiv:1703.05330.

def ff(process, q2, par, scale, order_z=3, order_z_slp=2, order_z_sslp=1):
    r"""Central value of $B\to P$ form factors in the lattice convention
    CLN parametrization.

    See arXiv:hep-ph/9712417 and arXiv:1703.05330.
    """
    flavio.citations.register("Caprini:1997mu")
    pd = process_dict[process]
    mB = par['m_' + pd['B']]
    mP = par['m_' + pd['P']]
    w = max((mB**2 + mP**2 - q2) / (2 * mB * mP), 1)
    phqet = hqet.get_hqet_parameters(par)
    ash = phqet['ash']
    epsc = phqet['epsc']
    epsb = phqet['epsb']
    zc = phqet['zc']
    CV1 = hqet.CV1(w, zc)
    CV2 = hqet.CV2(w, zc)
    CV3 = hqet.CV3(w, zc)
    CT1 = hqet.CT1(w, zc)
    CT2 = hqet.CT2(w, zc)
    CT3 = hqet.CT3(w, zc)
    z = common.z(mB, mP, q2, t0='tm')
    rho2 = par['CLN rho2_xi']
    c = par['CLN c_xi']
    xi3 = par['CLN xi3']
    xi = hqet.xi(z, rho2, c, xi3, order_z=order_z)
    L = hqet.Lz(par, w, z, order_z=order_z_slp)
    ell = hqet.ell(par, z, order_z=order_z_sslp)
    h = {}
    h['h+'] = xi * (1 + ash * (CV1 + (w + 1) / 2 * (CV2 + CV3))
                    + (epsc + epsb) * L[1]
                    + epsc**2 * ell[1])
    h['h-'] = xi * (ash * (w + 1) / 2 * (CV2 - CV3)
                    + (epsc - epsb) * L[4]
                    + epsc**2 * ell[4])
    h['hT'] = xi * (1 + ash * (CT1 - CT2 + CT3)
                    + (epsc + epsb) * (L[1] - L[4])
                    + epsc**2 * (ell[1] - ell[4]))
    return h_to_f(mB, mP, h, q2)

def h_to_f(

mB, mP, h, q2)

Convert HQET form factors to the standard basis.

See e.g. arXiv:1309.0301, eq. (31)

def h_to_f(mB, mP, h, q2):
    """Convert HQET form factors to the standard basis.

    See e.g. arXiv:1309.0301, eq. (31)"""
    ff = {}
    r = mP / mB
    ff['f+'] = ((r + 1) * h['h+'] + (r - 1) * h['h-']) / (2 * sqrt(r))
    fminus = ((r - 1) * h['h+'] + (r + 1) * h['h-']) / (2 * sqrt(r))
    ff['f0'] = ff['f+'] + fminus * q2 / (mB**2 - mP**2)
    ff['fT'] = (r + 1) / (2 * sqrt(r)) * h['hT']
    return ff