flavio.physics.bdecays.formfactors.lambdab_12.sse module
from math import sqrt import numpy as np from flavio.physics.bdecays.formfactors.common import z def zs(mX, mP, par, q2): mLb = par['m_Lambdab'] mB = par['m_B+'] zq2 = z(mB, mP, q2, t0=(mLb - mX)**2) # cf. eq. (34) of arXiv:1602.01399 return np.array([1, zq2, zq2**2]) def pole(ff, mres, q2): m = mres[_mresdict[ff]] return 1/(1-q2/m**2) _mresdict = {'fV0': '1-', 'fVperp': '1-', 'fT0': '1-', 'fTperp': '1-', 'fVt': '0+', 'fA0': '1+', 'fAperp': '1+', 'fT50': '1+', 'fT5perp': '1+', 'fAt': '0-', } # resonance masses used in arXiv:1602.01399 _mres = {} _mres['b->s'] = {'1-': 5.416, '0+': 5.711, '1+': 5.750, '0-': 5.367} # X: name of the final-state baryon, q: quark-level transition (e.g. 'b->s'), # P: name of the pseudoscalar meson with the same flavour QN as X (needed for z) _process_dict = {} _process_dict['Lambdab->Lambda'] = {'X': 'Lambda', 'P': 'K+', 'q': 'b->s'} def ff(process, q2, par, n=2): r"""Central value of $\Lambda_b\to X_{1/2}$ form factors in the helicity basis and simplified series expansion (SSE) parametrization. The helicity basis defines the form factors $f_+$, $f_0$, $f_\perp$, $g_+$, $g_0$, $g_\perp$, $h_+$, $h_\perp$, $\tilde h_+$, $\tilde h_\perp$, The SSE defines $$F_i(q^2) = P_i(q^2) \sum_k a_k^i \,z(q^2)^k$$ where $P_i(q^2)=(1-q^2/m_{R,i}^2)^{-1}$ is a simple pole. """ pd = _process_dict[process] mres = _mres[pd['q']] mX = par['m_'+pd['X']] mP = par['m_'+pd['P']] ff = {} # implementing the two endpoint relations in (7) and (8) of arXiv:1602.01399 par[process+' SSE a0_fAperp'] = par[process+' SSE a0_fA0'] par[process+' SSE a0_fT5perp'] = par[process+' SSE a0_fT50'] for i in ['fA0', 'fAperp', 'fAt', 'fT0', 'fT50', 'fT5perp', 'fTperp', 'fV0', 'fVperp', 'fVt']: a = [ par[process+' SSE ' + 'a' + str(j) + '_' + i] for j in range(n) ] ff[i] = pole(i, mres, q2)*np.dot(a, zs(mX, mP, par, q2)[:n]) return ff
Functions
def ff(
process, q2, par, n=2)
Central value of $\Lambda_b\to X_{1/2}$ form factors in the helicity basis and simplified series expansion (SSE) parametrization.
The helicity basis defines the form factors $f_+$, $f_0$, $f_\perp$, $g_+$, $g_0$, $g_\perp$, $h_+$, $h_\perp$, $\tilde h_+$, $\tilde h_\perp$,
The SSE defines $$F_i(q^2) = P_i(q^2) \sum_k a_k^i \,z(q^2)^k$$ where $P_i(q^2)=(1-q^2/m_{R,i}^2)^{-1}$ is a simple pole.
def ff(process, q2, par, n=2): r"""Central value of $\Lambda_b\to X_{1/2}$ form factors in the helicity basis and simplified series expansion (SSE) parametrization. The helicity basis defines the form factors $f_+$, $f_0$, $f_\perp$, $g_+$, $g_0$, $g_\perp$, $h_+$, $h_\perp$, $\tilde h_+$, $\tilde h_\perp$, The SSE defines $$F_i(q^2) = P_i(q^2) \sum_k a_k^i \,z(q^2)^k$$ where $P_i(q^2)=(1-q^2/m_{R,i}^2)^{-1}$ is a simple pole. """ pd = _process_dict[process] mres = _mres[pd['q']] mX = par['m_'+pd['X']] mP = par['m_'+pd['P']] ff = {} # implementing the two endpoint relations in (7) and (8) of arXiv:1602.01399 par[process+' SSE a0_fAperp'] = par[process+' SSE a0_fA0'] par[process+' SSE a0_fT5perp'] = par[process+' SSE a0_fT50'] for i in ['fA0', 'fAperp', 'fAt', 'fT0', 'fT50', 'fT5perp', 'fTperp', 'fV0', 'fVperp', 'fVt']: a = [ par[process+' SSE ' + 'a' + str(j) + '_' + i] for j in range(n) ] ff[i] = pole(i, mres, q2)*np.dot(a, zs(mX, mP, par, q2)[:n]) return ff
def pole(
ff, mres, q2)
def pole(ff, mres, q2): m = mres[_mresdict[ff]] return 1/(1-q2/m**2)
def zs(
mX, mP, par, q2)
def zs(mX, mP, par, q2): mLb = par['m_Lambdab'] mB = par['m_B+'] zq2 = z(mB, mP, q2, t0=(mLb - mX)**2) # cf. eq. (34) of arXiv:1602.01399 return np.array([1, zq2, zq2**2])