Top

flavio.physics.edms.common module

Common functions for EDMs.

"""Common functions for EDMs."""

import flavio
from math import sqrt, pi

# convert from EFT to 'nf_out'
eft_nf_out = {'WET': 5, 'WET-4': 4, 'WET-3': 3, 'WET-2': 2}


def get_m(par, f, scale, eft):
    if f in ['e', 'mu', 'tau']:
        return par['m_' + f]
    nf_out = eft_nf_out[eft]
    if f == 'u':
        return flavio.physics.running.running.get_md(par, scale, nf_out=nf_out)
    elif f == 'd':
        return flavio.physics.running.running.get_mu(par, scale, nf_out=nf_out)
    elif f == 's':
        return flavio.physics.running.running.get_ms(par, scale, nf_out=nf_out)
    else:
        raise ValueError("get_m not defined for fermion {}".format(f))


def edm_f(par, wc, f, scale, eft):
    r"""EDM of the fermion `f` at the scale `scale`.

    In terms of the Wilson coefficient of the dipole operator in the
    WCxf flavio basis, it is given as

    $$d_f = 2p \text{Im}C_7^{ff}$$

    where $p = \frac{4 G_F}\sqrt{2} \frac{e}{16\pi^2} m_f$ is the prefactor
    of the operator in the effective Lagrangian."""
    m = get_m(par, f, scale, eft)
    nf_out = eft_nf_out[eft]
    alpha = flavio.physics.running.running.get_alpha(par, scale, nf_out=nf_out)
    e = sqrt(4 * pi * alpha['alpha_e'])
    pre = 4 * par['GF'] / sqrt(2) * e / (16 * pi**2) * m
    return 2 * pre * wc['C7_{}'.format(2*f)].imag


def cedm_f(par, wc, f, scale, eft):
    r"""EDM of the quark `f` at the scale `scale`.

    In terms of the Wilson coefficient of the dipole operator in the
    WCxf flavio basis, it is given as

    $$d_f = 2p/g_s \text{Im}C_8^{ff}$$

    where $p = \frac{4 G_F}\sqrt{2} \frac{g_s}{16\pi^2} m_f$ is the prefactor
    of the operator in the effective Lagrangian."""
    m = get_m(par, f, scale, eft)
    pre_gs = 4 * par['GF'] / sqrt(2) / (16 * pi**2) * m  # p / gs
    return 2 * pre_gs * wc['C8_{}'.format(2*f)].imag


def proton_charges(par, scale):
    """Charges of the nucleon."""
    mu = flavio.physics.running.running.get_mu(par, scale, nf_out=3)
    md = flavio.physics.running.running.get_md(par, scale, nf_out=3)
    ms = flavio.physics.running.running.get_ms(par, scale, nf_out=3)
    me = {}
    # u-d
    me['gV_u-d'] = 1  # CVC
    me['gA_u-d'] = par['g_A']
    me['gS_u-d'] = par['gS_u-d']
    me['gP_u-d'] = (par['m_p'] + par['m_n']) / (md + mu) + par['g_A']
    me['gT_u-d'] = par['gT_u'] - par['gT_d']
    # u+d
    me['gS_u+d'] = par['sigma_piN'] / ((md + mu) / 2)
    me['gT_u+d'] = par['gT_u'] + par['gT_d']
    # strange
    me['gA_s'] = par['gA_s']
    me['gS_s'] = par['sigma_s'] / ms
    me['gT_s'] = par['gT_s']
    return me

Module variables

var eft_nf_out

var pi

Functions

def cedm_f(

par, wc, f, scale, eft)

EDM of the quark f at the scale scale.

In terms of the Wilson coefficient of the dipole operator in the WCxf flavio basis, it is given as

$$d_f = 2p/g_s \text{Im}C_8^{ff}$$

where $p = \frac{4 G_F}\sqrt{2} \frac{g_s}{16\pi^2} m_f$ is the prefactor of the operator in the effective Lagrangian.

def cedm_f(par, wc, f, scale, eft):
    r"""EDM of the quark `f` at the scale `scale`.

    In terms of the Wilson coefficient of the dipole operator in the
    WCxf flavio basis, it is given as

    $$d_f = 2p/g_s \text{Im}C_8^{ff}$$

    where $p = \frac{4 G_F}\sqrt{2} \frac{g_s}{16\pi^2} m_f$ is the prefactor
    of the operator in the effective Lagrangian."""
    m = get_m(par, f, scale, eft)
    pre_gs = 4 * par['GF'] / sqrt(2) / (16 * pi**2) * m  # p / gs
    return 2 * pre_gs * wc['C8_{}'.format(2*f)].imag

def edm_f(

par, wc, f, scale, eft)

EDM of the fermion f at the scale scale.

In terms of the Wilson coefficient of the dipole operator in the WCxf flavio basis, it is given as

$$d_f = 2p \text{Im}C_7^{ff}$$

where $p = \frac{4 G_F}\sqrt{2} \frac{e}{16\pi^2} m_f$ is the prefactor of the operator in the effective Lagrangian.

def edm_f(par, wc, f, scale, eft):
    r"""EDM of the fermion `f` at the scale `scale`.

    In terms of the Wilson coefficient of the dipole operator in the
    WCxf flavio basis, it is given as

    $$d_f = 2p \text{Im}C_7^{ff}$$

    where $p = \frac{4 G_F}\sqrt{2} \frac{e}{16\pi^2} m_f$ is the prefactor
    of the operator in the effective Lagrangian."""
    m = get_m(par, f, scale, eft)
    nf_out = eft_nf_out[eft]
    alpha = flavio.physics.running.running.get_alpha(par, scale, nf_out=nf_out)
    e = sqrt(4 * pi * alpha['alpha_e'])
    pre = 4 * par['GF'] / sqrt(2) * e / (16 * pi**2) * m
    return 2 * pre * wc['C7_{}'.format(2*f)].imag

def get_m(

par, f, scale, eft)

def get_m(par, f, scale, eft):
    if f in ['e', 'mu', 'tau']:
        return par['m_' + f]
    nf_out = eft_nf_out[eft]
    if f == 'u':
        return flavio.physics.running.running.get_md(par, scale, nf_out=nf_out)
    elif f == 'd':
        return flavio.physics.running.running.get_mu(par, scale, nf_out=nf_out)
    elif f == 's':
        return flavio.physics.running.running.get_ms(par, scale, nf_out=nf_out)
    else:
        raise ValueError("get_m not defined for fermion {}".format(f))

def proton_charges(

par, scale)

Charges of the nucleon.

def proton_charges(par, scale):
    """Charges of the nucleon."""
    mu = flavio.physics.running.running.get_mu(par, scale, nf_out=3)
    md = flavio.physics.running.running.get_md(par, scale, nf_out=3)
    ms = flavio.physics.running.running.get_ms(par, scale, nf_out=3)
    me = {}
    # u-d
    me['gV_u-d'] = 1  # CVC
    me['gA_u-d'] = par['g_A']
    me['gS_u-d'] = par['gS_u-d']
    me['gP_u-d'] = (par['m_p'] + par['m_n']) / (md + mu) + par['g_A']
    me['gT_u-d'] = par['gT_u'] - par['gT_d']
    # u+d
    me['gS_u+d'] = par['sigma_piN'] / ((md + mu) / 2)
    me['gT_u+d'] = par['gT_u'] + par['gT_d']
    # strange
    me['gA_s'] = par['gA_s']
    me['gS_s'] = par['sigma_s'] / ms
    me['gT_s'] = par['gT_s']
    return me