flavio.physics.wdecays.mw module
$W$ mass prediction in the presence of new physics.
r"""$W$ mass prediction in the presence of new physics.""" from math import log, sqrt import flavio from flavio.physics.zdecays import smeftew def mW_SM(par): r"""Two-loop SM prediction for the $W$ pole mass. Eq. (6) of arXiv:hep-ph/0311148.""" flavio.citations.register("Awramik:2003rn") dH = log(par['m_h'] / 100) dh = (par['m_h'] / 100)**2 dt = (par['m_t'] / 174.3)**2 - 1 dZ = par['m_Z'] / 91.1875 - 1 dalpha = (par['Delta_alpha_e_had']+par['Delta_alpha_e_lep']) / 0.05907 - 1 dalphas = par['alpha_s'] / 0.119 - 1 m0W = 80.3779 c1 = 0.05427 c2 = 0.008931 c3 = 0.0000882 c4 = 0.000161 c5 = 1.070 c6 = 0.5237 c7 = 0.0679 c8 = 0.00179 c9 = 0.0000664 c10 = 0.0795 c11 = 114.9 return (m0W - c1 * dH - c2 * dH**2 + c3 * dH**4 + c4 * (dh - 1) - c5 * dalpha + c6 * dt - c7 * dt**2 - c8 * dH * dt + c9 * dh * dt - c10 * dalphas + c11 * dZ) def dmW_SMEFT(par, C): r"""Shift in the $W$ mass due to dimension-6 operators. Eq. (2) of arXiv:1606.06502.""" flavio.citations.register("Bjorn:2016zlr") sh2 = smeftew._sinthetahat2(par) sh = sqrt(sh2) ch2 = 1 - sh2 ch = sqrt(ch2) Dh = ch * sh / ((ch**2 - sh**2) * 2 * sqrt(2) * par['GF']) return 1 / 2 * Dh * (4 * C['phiWB'] + ch / sh * C['phiD'] + 2 * sh / ch * (C['phil3_11'] + C['phil3_22'] - C['ll_1221'] / 2)).real def mW(wc_obj, par): r"""$W$ pole mass.""" scale = flavio.config['renormalization scale']['wdecays'] C = wc_obj.get_wcxf(sector='all', scale=scale, par=par, eft='SMEFT', basis='Warsaw') dmW = dmW_SMEFT(par, C) return mW_SM(par) * (1 - dmW) _obs_name = "m_W" _obs = flavio.classes.Observable(_obs_name) _obs.tex = r"$m_W$" _obs.set_description(r"$W^\pm$ boson pole mass") flavio.classes.Prediction(_obs_name, mW)
Functions
def dmW_SMEFT(
par, C)
Shift in the $W$ mass due to dimension-6 operators.
Eq. (2) of arXiv:1606.06502.
def dmW_SMEFT(par, C): r"""Shift in the $W$ mass due to dimension-6 operators. Eq. (2) of arXiv:1606.06502.""" flavio.citations.register("Bjorn:2016zlr") sh2 = smeftew._sinthetahat2(par) sh = sqrt(sh2) ch2 = 1 - sh2 ch = sqrt(ch2) Dh = ch * sh / ((ch**2 - sh**2) * 2 * sqrt(2) * par['GF']) return 1 / 2 * Dh * (4 * C['phiWB'] + ch / sh * C['phiD'] + 2 * sh / ch * (C['phil3_11'] + C['phil3_22'] - C['ll_1221'] / 2)).real
def mW(
wc_obj, par)
$W$ pole mass.
def mW(wc_obj, par): r"""$W$ pole mass.""" scale = flavio.config['renormalization scale']['wdecays'] C = wc_obj.get_wcxf(sector='all', scale=scale, par=par, eft='SMEFT', basis='Warsaw') dmW = dmW_SMEFT(par, C) return mW_SM(par) * (1 - dmW)
def mW_SM(
par)
Two-loop SM prediction for the $W$ pole mass.
Eq. (6) of arXiv:hep-ph/0311148.
def mW_SM(par): r"""Two-loop SM prediction for the $W$ pole mass. Eq. (6) of arXiv:hep-ph/0311148.""" flavio.citations.register("Awramik:2003rn") dH = log(par['m_h'] / 100) dh = (par['m_h'] / 100)**2 dt = (par['m_t'] / 174.3)**2 - 1 dZ = par['m_Z'] / 91.1875 - 1 dalpha = (par['Delta_alpha_e_had']+par['Delta_alpha_e_lep']) / 0.05907 - 1 dalphas = par['alpha_s'] / 0.119 - 1 m0W = 80.3779 c1 = 0.05427 c2 = 0.008931 c3 = 0.0000882 c4 = 0.000161 c5 = 1.070 c6 = 0.5237 c7 = 0.0679 c8 = 0.00179 c9 = 0.0000664 c10 = 0.0795 c11 = 114.9 return (m0W - c1 * dH - c2 * dH**2 + c3 * dH**4 + c4 * (dh - 1) - c5 * dalpha + c6 * dt - c7 * dt**2 - c8 * dH * dt + c9 * dh * dt - c10 * dalphas + c11 * dZ)