Observables / $b$ hadron decays / FCNC decays

The tables below have been generated automatically from the observables currently implemented in flavio. The first column is the string name that must be used when calling functions such as flavio.sm_prediction. The last column lists the arguments the observable depends on (which can also be empty in case of a scalar observable).

$B\to P\ell^+\ell^-$

$B^-\to K^- \mu^+\tau^-$

Name Symbol Description Arguments
BR(B+->Kmutau) $\text{BR}(B^-\to K^- \mu^+\tau^-)$ Total branching ratio of $B^-\to K^- \mu^+\tau^-$  

$B^-\to K^- \mu^+e^-$

Name Symbol Description Arguments
BR(B+->Kmue) $\text{BR}(B^-\to K^- \mu^+e^-)$ Total branching ratio of $B^-\to K^- \mu^+e^-$  

$B^-\to K^- \mu^\pm\tau^\mp$

Name Symbol Description Arguments
BR(B+->Kmutau,taumu) $\text{BR}(B^-\to K^- \mu^\pm\tau^\mp)$ Total branching ratio of $B^-\to K^- \mu^\pm\tau^\mp$  

$B^-\to K^- \tau^+\mu^-$

Name Symbol Description Arguments
BR(B+->Ktaumu) $\text{BR}(B^-\to K^- \tau^+\mu^-)$ Total branching ratio of $B^-\to K^- \tau^+\mu^-$  

$B^-\to K^- \tau^+e^-$

Name Symbol Description Arguments
BR(B+->Ktaue) $\text{BR}(B^-\to K^- \tau^+e^-)$ Total branching ratio of $B^-\to K^- \tau^+e^-$  

$B^-\to K^- e^+\mu^-$

Name Symbol Description Arguments
BR(B+->Kemu) $\text{BR}(B^-\to K^- e^+\mu^-)$ Total branching ratio of $B^-\to K^- e^+\mu^-$  

$B^-\to K^- e^+\tau^-$

Name Symbol Description Arguments
BR(B+->Ketau) $\text{BR}(B^-\to K^- e^+\tau^-)$ Total branching ratio of $B^-\to K^- e^+\tau^-$  

$B^-\to K^- e^\pm\mu^\mp$

Name Symbol Description Arguments
BR(B+->Kemu,mue) $\text{BR}(B^-\to K^- e^\pm\mu^\mp)$ Total branching ratio of $B^-\to K^- e^\pm\mu^\mp$  

$B^-\to K^- e^\pm\tau^\mp$

Name Symbol Description Arguments
BR(B+->Ketau,taue) $\text{BR}(B^-\to K^- e^\pm\tau^\mp)$ Total branching ratio of $B^-\to K^- e^\pm\tau^\mp$  

$B^-\to \pi^- \mu^+\tau^-$

Name Symbol Description Arguments
BR(B+->pimutau) $\text{BR}(B^-\to \pi^- \mu^+\tau^-)$ Total branching ratio of $B^-\to \pi^- \mu^+\tau^-$  

$B^-\to \pi^- \mu^+e^-$

Name Symbol Description Arguments
BR(B+->pimue) $\text{BR}(B^-\to \pi^- \mu^+e^-)$ Total branching ratio of $B^-\to \pi^- \mu^+e^-$  

$B^-\to \pi^- \mu^\pm\tau^\mp$

Name Symbol Description Arguments
BR(B+->pimutau,taumu) $\text{BR}(B^-\to \pi^- \mu^\pm\tau^\mp)$ Total branching ratio of $B^-\to \pi^- \mu^\pm\tau^\mp$  

$B^-\to \pi^- \tau^+\mu^-$

Name Symbol Description Arguments
BR(B+->pitaumu) $\text{BR}(B^-\to \pi^- \tau^+\mu^-)$ Total branching ratio of $B^-\to \pi^- \tau^+\mu^-$  

$B^-\to \pi^- \tau^+e^-$

Name Symbol Description Arguments
BR(B+->pitaue) $\text{BR}(B^-\to \pi^- \tau^+e^-)$ Total branching ratio of $B^-\to \pi^- \tau^+e^-$  

$B^-\to \pi^- e^+\mu^-$

Name Symbol Description Arguments
BR(B+->piemu) $\text{BR}(B^-\to \pi^- e^+\mu^-)$ Total branching ratio of $B^-\to \pi^- e^+\mu^-$  

$B^-\to \pi^- e^+\tau^-$

Name Symbol Description Arguments
BR(B+->pietau) $\text{BR}(B^-\to \pi^- e^+\tau^-)$ Total branching ratio of $B^-\to \pi^- e^+\tau^-$  

$B^-\to \pi^- e^\pm\mu^\mp$

Name Symbol Description Arguments
BR(B+->piemu,mue) $\text{BR}(B^-\to \pi^- e^\pm\mu^\mp)$ Total branching ratio of $B^-\to \pi^- e^\pm\mu^\mp$  

$B^-\to \pi^- e^\pm\tau^\mp$

Name Symbol Description Arguments
BR(B+->pietau,taue) $\text{BR}(B^-\to \pi^- e^\pm\tau^\mp)$ Total branching ratio of $B^-\to \pi^- e^\pm\tau^\mp$  

$B^0\to K^0\mu^+\mu^-$

Name Symbol Description Arguments
<ACP>(B0->Kmumu) $\langle A_\text{CP}\rangle(B^0\to K^0\mu^+\mu^-)$ Binned Direct CP asymmetry in $B^0\to K^0\mu^+\mu^-$ q2min, q2max
<AFB>(B0->Kmumu) $\langle A_\text{FB}\rangle(B^0\to K^0\mu^+\mu^-)$ Binned forward-backward asymmetry in $B^0\to K^0\mu^+\mu^-$ q2min, q2max
<FH>(B0->Kmumu) $\langle F_H\rangle(B^0\to K^0\mu^+\mu^-)$ Binned flat term in $B^0\to K^0\mu^+\mu^-$ q2min, q2max
<Rmue>(B0->Kll) $\langle R_{\mu e} \rangle(B^0\to K^0\ell^+\ell^-)$ Ratio of partial branching ratios of $B^0\to K^0\mu^+ \mu^-$ and $B^0\to K^0e^+ e^-$ q2min, q2max
<Rtaumu>(B0->Kll) $\langle R_{\tau \mu} \rangle(B^0\to K^0\ell^+\ell^-)$ Ratio of partial branching ratios of $B^0\to K^0\tau^+ \tau^-$ and $B^0\to K^0\mu^+ \mu^-$ q2min, q2max
<dBR/dq2>(B0->Kmumu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^0\to K^0\mu^+\mu^-)$ Binned differential branching ratio of $B^0\to K^0\mu^+\mu^-$ q2min, q2max
ACP(B0->Kmumu) $A_\text{CP}(B^0\to K^0\mu^+\mu^-)$ Direct CP asymmetry in $B^0\to K^0\mu^+\mu^-$ q2
AFB(B0->Kmumu) $A_\text{FB}(B^0\to K^0\mu^+\mu^-)$ Forward-backward asymmetry in $B^0\to K^0\mu^+\mu^-$ q2
FH(B0->Kmumu) $F_H(B^0\to K^0\mu^+\mu^-)$ Flat term in $B^0\to K^0\mu^+\mu^-$ q2
Rmue(B0->Kll) $R_{\mu e}(B^0\to K^0\ell^+\ell^-)$ Ratio of differential branching ratios of $B^0\to K^0\mu^+ \mu^-$ and $B^0\to K^0e^+ e^-$ q2
Rtaumu(B0->Kll) $R_{\tau \mu}(B^0\to K^0\ell^+\ell^-)$ Ratio of differential branching ratios of $B^0\to K^0\tau^+ \tau^-$ and $B^0\to K^0\mu^+ \mu^-$ q2
dBR/dq2(B0->Kmumu) $\frac{d\text{BR}}{dq^2}(B^0\to K^0\mu^+\mu^-)$ Differential branching ratio of $B^0\to K^0\mu^+\mu^-$ q2

$B^0\to K^0\tau^+\tau^-$

Name Symbol Description Arguments
<ACP>(B0->Ktautau) $\langle A_\text{CP}\rangle(B^0\to K^0\tau^+\tau^-)$ Binned Direct CP asymmetry in $B^0\to K^0\tau^+\tau^-$ q2min, q2max
<AFB>(B0->Ktautau) $\langle A_\text{FB}\rangle(B^0\to K^0\tau^+\tau^-)$ Binned forward-backward asymmetry in $B^0\to K^0\tau^+\tau^-$ q2min, q2max
<FH>(B0->Ktautau) $\langle F_H\rangle(B^0\to K^0\tau^+\tau^-)$ Binned flat term in $B^0\to K^0\tau^+\tau^-$ q2min, q2max
<Rtaumu>(B0->Kll) $\langle R_{\tau \mu} \rangle(B^0\to K^0\ell^+\ell^-)$ Ratio of partial branching ratios of $B^0\to K^0\tau^+ \tau^-$ and $B^0\to K^0\mu^+ \mu^-$ q2min, q2max
<dBR/dq2>(B0->Ktautau) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^0\to K^0\tau^+\tau^-)$ Binned differential branching ratio of $B^0\to K^0\tau^+\tau^-$ q2min, q2max
ACP(B0->Ktautau) $A_\text{CP}(B^0\to K^0\tau^+\tau^-)$ Direct CP asymmetry in $B^0\to K^0\tau^+\tau^-$ q2
AFB(B0->Ktautau) $A_\text{FB}(B^0\to K^0\tau^+\tau^-)$ Forward-backward asymmetry in $B^0\to K^0\tau^+\tau^-$ q2
BR(B0->Ktautau) $\text{BR}(B^0\to K^0\tau^+\tau^-)$ Branching ratio of $B^0\to K^0\tau^+\tau^-$  
FH(B0->Ktautau) $F_H(B^0\to K^0\tau^+\tau^-)$ Flat term in $B^0\to K^0\tau^+\tau^-$ q2
Rtaumu(B0->Kll) $R_{\tau \mu}(B^0\to K^0\ell^+\ell^-)$ Ratio of differential branching ratios of $B^0\to K^0\tau^+ \tau^-$ and $B^0\to K^0\mu^+ \mu^-$ q2
dBR/dq2(B0->Ktautau) $\frac{d\text{BR}}{dq^2}(B^0\to K^0\tau^+\tau^-)$ Differential branching ratio of $B^0\to K^0\tau^+\tau^-$ q2

$B^0\to K^0e^+e^-$

Name Symbol Description Arguments
<ACP>(B0->Kee) $\langle A_\text{CP}\rangle(B^0\to K^0e^+e^-)$ Binned Direct CP asymmetry in $B^0\to K^0e^+e^-$ q2min, q2max
<AFB>(B0->Kee) $\langle A_\text{FB}\rangle(B^0\to K^0e^+e^-)$ Binned forward-backward asymmetry in $B^0\to K^0e^+e^-$ q2min, q2max
<FH>(B0->Kee) $\langle F_H\rangle(B^0\to K^0e^+e^-)$ Binned flat term in $B^0\to K^0e^+e^-$ q2min, q2max
<Rmue>(B0->Kll) $\langle R_{\mu e} \rangle(B^0\to K^0\ell^+\ell^-)$ Ratio of partial branching ratios of $B^0\to K^0\mu^+ \mu^-$ and $B^0\to K^0e^+ e^-$ q2min, q2max
<dBR/dq2>(B0->Kee) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^0\to K^0e^+e^-)$ Binned differential branching ratio of $B^0\to K^0e^+e^-$ q2min, q2max
ACP(B0->Kee) $A_\text{CP}(B^0\to K^0e^+e^-)$ Direct CP asymmetry in $B^0\to K^0e^+e^-$ q2
AFB(B0->Kee) $A_\text{FB}(B^0\to K^0e^+e^-)$ Forward-backward asymmetry in $B^0\to K^0e^+e^-$ q2
FH(B0->Kee) $F_H(B^0\to K^0e^+e^-)$ Flat term in $B^0\to K^0e^+e^-$ q2
Rmue(B0->Kll) $R_{\mu e}(B^0\to K^0\ell^+\ell^-)$ Ratio of differential branching ratios of $B^0\to K^0\mu^+ \mu^-$ and $B^0\to K^0e^+ e^-$ q2
dBR/dq2(B0->Kee) $\frac{d\text{BR}}{dq^2}(B^0\to K^0e^+e^-)$ Differential branching ratio of $B^0\to K^0e^+e^-$ q2

$B^\pm\to K^\pm \mu^+\mu^-$

Name Symbol Description Arguments
<ACP>(B+->Kmumu) $\langle A_\text{CP}\rangle(B^\pm\to K^\pm \mu^+\mu^-)$ Binned Direct CP asymmetry in $B^\pm\to K^\pm \mu^+\mu^-$ q2min, q2max
<AFB>(B+->Kmumu) $\langle A_\text{FB}\rangle(B^\pm\to K^\pm \mu^+\mu^-)$ Binned forward-backward asymmetry in $B^\pm\to K^\pm \mu^+\mu^-$ q2min, q2max
<FH>(B+->Kmumu) $\langle F_H\rangle(B^\pm\to K^\pm \mu^+\mu^-)$ Binned flat term in $B^\pm\to K^\pm \mu^+\mu^-$ q2min, q2max
<Rmue>(B+->Kll) $\langle R_{\mu e} \rangle(B^\pm\to K^\pm \ell^+\ell^-)$ Ratio of partial branching ratios of $B^\pm\to K^\pm \mu^+ \mu^-$ and $B^\pm\to K^\pm e^+ e^-$ q2min, q2max
<Rtaumu>(B+->Kll) $\langle R_{\tau \mu} \rangle(B^\pm\to K^\pm \ell^+\ell^-)$ Ratio of partial branching ratios of $B^\pm\to K^\pm \tau^+ \tau^-$ and $B^\pm\to K^\pm \mu^+ \mu^-$ q2min, q2max
<dBR/dq2>(B+->Kmumu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^\pm\to K^\pm \mu^+\mu^-)$ Binned differential branching ratio of $B^\pm\to K^\pm \mu^+\mu^-$ q2min, q2max
ACP(B+->Kmumu) $A_\text{CP}(B^\pm\to K^\pm \mu^+\mu^-)$ Direct CP asymmetry in $B^\pm\to K^\pm \mu^+\mu^-$ q2
AFB(B+->Kmumu) $A_\text{FB}(B^\pm\to K^\pm \mu^+\mu^-)$ Forward-backward asymmetry in $B^\pm\to K^\pm \mu^+\mu^-$ q2
FH(B+->Kmumu) $F_H(B^\pm\to K^\pm \mu^+\mu^-)$ Flat term in $B^\pm\to K^\pm \mu^+\mu^-$ q2
Rmue(B+->Kll) $R_{\mu e}(B^\pm\to K^\pm \ell^+\ell^-)$ Ratio of differential branching ratios of $B^\pm\to K^\pm \mu^+ \mu^-$ and $B^\pm\to K^\pm e^+ e^-$ q2
Rtaumu(B+->Kll) $R_{\tau \mu}(B^\pm\to K^\pm \ell^+\ell^-)$ Ratio of differential branching ratios of $B^\pm\to K^\pm \tau^+ \tau^-$ and $B^\pm\to K^\pm \mu^+ \mu^-$ q2
dBR/dq2(B+->Kmumu) $\frac{d\text{BR}}{dq^2}(B^\pm\to K^\pm \mu^+\mu^-)$ Differential branching ratio of $B^\pm\to K^\pm \mu^+\mu^-$ q2

$B^\pm\to K^\pm \tau^+\tau^-$

Name Symbol Description Arguments
<ACP>(B+->Ktautau) $\langle A_\text{CP}\rangle(B^\pm\to K^\pm \tau^+\tau^-)$ Binned Direct CP asymmetry in $B^\pm\to K^\pm \tau^+\tau^-$ q2min, q2max
<AFB>(B+->Ktautau) $\langle A_\text{FB}\rangle(B^\pm\to K^\pm \tau^+\tau^-)$ Binned forward-backward asymmetry in $B^\pm\to K^\pm \tau^+\tau^-$ q2min, q2max
<FH>(B+->Ktautau) $\langle F_H\rangle(B^\pm\to K^\pm \tau^+\tau^-)$ Binned flat term in $B^\pm\to K^\pm \tau^+\tau^-$ q2min, q2max
<Rtaumu>(B+->Kll) $\langle R_{\tau \mu} \rangle(B^\pm\to K^\pm \ell^+\ell^-)$ Ratio of partial branching ratios of $B^\pm\to K^\pm \tau^+ \tau^-$ and $B^\pm\to K^\pm \mu^+ \mu^-$ q2min, q2max
<dBR/dq2>(B+->Ktautau) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^\pm\to K^\pm \tau^+\tau^-)$ Binned differential branching ratio of $B^\pm\to K^\pm \tau^+\tau^-$ q2min, q2max
ACP(B+->Ktautau) $A_\text{CP}(B^\pm\to K^\pm \tau^+\tau^-)$ Direct CP asymmetry in $B^\pm\to K^\pm \tau^+\tau^-$ q2
AFB(B+->Ktautau) $A_\text{FB}(B^\pm\to K^\pm \tau^+\tau^-)$ Forward-backward asymmetry in $B^\pm\to K^\pm \tau^+\tau^-$ q2
BR(B+->Ktautau) $\text{BR}(B^\pm\to K^\pm \tau^+\tau^-)$ Branching ratio of $B^\pm\to K^\pm \tau^+\tau^-$  
FH(B+->Ktautau) $F_H(B^\pm\to K^\pm \tau^+\tau^-)$ Flat term in $B^\pm\to K^\pm \tau^+\tau^-$ q2
Rtaumu(B+->Kll) $R_{\tau \mu}(B^\pm\to K^\pm \ell^+\ell^-)$ Ratio of differential branching ratios of $B^\pm\to K^\pm \tau^+ \tau^-$ and $B^\pm\to K^\pm \mu^+ \mu^-$ q2
dBR/dq2(B+->Ktautau) $\frac{d\text{BR}}{dq^2}(B^\pm\to K^\pm \tau^+\tau^-)$ Differential branching ratio of $B^\pm\to K^\pm \tau^+\tau^-$ q2

$B^\pm\to K^\pm e^+e^-$

Name Symbol Description Arguments
<ACP>(B+->Kee) $\langle A_\text{CP}\rangle(B^\pm\to K^\pm e^+e^-)$ Binned Direct CP asymmetry in $B^\pm\to K^\pm e^+e^-$ q2min, q2max
<AFB>(B+->Kee) $\langle A_\text{FB}\rangle(B^\pm\to K^\pm e^+e^-)$ Binned forward-backward asymmetry in $B^\pm\to K^\pm e^+e^-$ q2min, q2max
<FH>(B+->Kee) $\langle F_H\rangle(B^\pm\to K^\pm e^+e^-)$ Binned flat term in $B^\pm\to K^\pm e^+e^-$ q2min, q2max
<Rmue>(B+->Kll) $\langle R_{\mu e} \rangle(B^\pm\to K^\pm \ell^+\ell^-)$ Ratio of partial branching ratios of $B^\pm\to K^\pm \mu^+ \mu^-$ and $B^\pm\to K^\pm e^+ e^-$ q2min, q2max
<dBR/dq2>(B+->Kee) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^\pm\to K^\pm e^+e^-)$ Binned differential branching ratio of $B^\pm\to K^\pm e^+e^-$ q2min, q2max
ACP(B+->Kee) $A_\text{CP}(B^\pm\to K^\pm e^+e^-)$ Direct CP asymmetry in $B^\pm\to K^\pm e^+e^-$ q2
AFB(B+->Kee) $A_\text{FB}(B^\pm\to K^\pm e^+e^-)$ Forward-backward asymmetry in $B^\pm\to K^\pm e^+e^-$ q2
FH(B+->Kee) $F_H(B^\pm\to K^\pm e^+e^-)$ Flat term in $B^\pm\to K^\pm e^+e^-$ q2
Rmue(B+->Kll) $R_{\mu e}(B^\pm\to K^\pm \ell^+\ell^-)$ Ratio of differential branching ratios of $B^\pm\to K^\pm \mu^+ \mu^-$ and $B^\pm\to K^\pm e^+ e^-$ q2
dBR/dq2(B+->Kee) $\frac{d\text{BR}}{dq^2}(B^\pm\to K^\pm e^+e^-)$ Differential branching ratio of $B^\pm\to K^\pm e^+e^-$ q2

$B^\pm\to \pi^\pm \mu^+\mu^-$

Name Symbol Description Arguments
<ACP>(B+->pimumu) $\langle A_\text{CP}\rangle(B^\pm\to \pi^\pm \mu^+\mu^-)$ Binned Direct CP asymmetry in $B^\pm\to \pi^\pm \mu^+\mu^-$ q2min, q2max
<AFB>(B+->pimumu) $\langle A_\text{FB}\rangle(B^\pm\to \pi^\pm \mu^+\mu^-)$ Binned forward-backward asymmetry in $B^\pm\to \pi^\pm \mu^+\mu^-$ q2min, q2max
<FH>(B+->pimumu) $\langle F_H\rangle(B^\pm\to \pi^\pm \mu^+\mu^-)$ Binned flat term in $B^\pm\to \pi^\pm \mu^+\mu^-$ q2min, q2max
<Rmue>(B+->pill) $\langle R_{\mu e} \rangle(B^\pm\to \pi^\pm \ell^+\ell^-)$ Ratio of partial branching ratios of $B^\pm\to \pi^\pm \mu^+ \mu^-$ and $B^\pm\to \pi^\pm e^+ e^-$ q2min, q2max
<Rtaumu>(B+->pill) $\langle R_{\tau \mu} \rangle(B^\pm\to \pi^\pm \ell^+\ell^-)$ Ratio of partial branching ratios of $B^\pm\to \pi^\pm \tau^+ \tau^-$ and $B^\pm\to \pi^\pm \mu^+ \mu^-$ q2min, q2max
<dBR/dq2>(B+->pimumu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^\pm\to \pi^\pm \mu^+\mu^-)$ Binned differential branching ratio of $B^\pm\to \pi^\pm \mu^+\mu^-$ q2min, q2max
ACP(B+->pimumu) $A_\text{CP}(B^\pm\to \pi^\pm \mu^+\mu^-)$ Direct CP asymmetry in $B^\pm\to \pi^\pm \mu^+\mu^-$ q2
AFB(B+->pimumu) $A_\text{FB}(B^\pm\to \pi^\pm \mu^+\mu^-)$ Forward-backward asymmetry in $B^\pm\to \pi^\pm \mu^+\mu^-$ q2
FH(B+->pimumu) $F_H(B^\pm\to \pi^\pm \mu^+\mu^-)$ Flat term in $B^\pm\to \pi^\pm \mu^+\mu^-$ q2
Rmue(B+->pill) $R_{\mu e}(B^\pm\to \pi^\pm \ell^+\ell^-)$ Ratio of differential branching ratios of $B^\pm\to \pi^\pm \mu^+ \mu^-$ and $B^\pm\to \pi^\pm e^+ e^-$ q2
Rtaumu(B+->pill) $R_{\tau \mu}(B^\pm\to \pi^\pm \ell^+\ell^-)$ Ratio of differential branching ratios of $B^\pm\to \pi^\pm \tau^+ \tau^-$ and $B^\pm\to \pi^\pm \mu^+ \mu^-$ q2
dBR/dq2(B+->pimumu) $\frac{d\text{BR}}{dq^2}(B^\pm\to \pi^\pm \mu^+\mu^-)$ Differential branching ratio of $B^\pm\to \pi^\pm \mu^+\mu^-$ q2

$B^\pm\to \pi^\pm \tau^+\tau^-$

Name Symbol Description Arguments
<ACP>(B+->pitautau) $\langle A_\text{CP}\rangle(B^\pm\to \pi^\pm \tau^+\tau^-)$ Binned Direct CP asymmetry in $B^\pm\to \pi^\pm \tau^+\tau^-$ q2min, q2max
<AFB>(B+->pitautau) $\langle A_\text{FB}\rangle(B^\pm\to \pi^\pm \tau^+\tau^-)$ Binned forward-backward asymmetry in $B^\pm\to \pi^\pm \tau^+\tau^-$ q2min, q2max
<FH>(B+->pitautau) $\langle F_H\rangle(B^\pm\to \pi^\pm \tau^+\tau^-)$ Binned flat term in $B^\pm\to \pi^\pm \tau^+\tau^-$ q2min, q2max
<Rtaumu>(B+->pill) $\langle R_{\tau \mu} \rangle(B^\pm\to \pi^\pm \ell^+\ell^-)$ Ratio of partial branching ratios of $B^\pm\to \pi^\pm \tau^+ \tau^-$ and $B^\pm\to \pi^\pm \mu^+ \mu^-$ q2min, q2max
<dBR/dq2>(B+->pitautau) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^\pm\to \pi^\pm \tau^+\tau^-)$ Binned differential branching ratio of $B^\pm\to \pi^\pm \tau^+\tau^-$ q2min, q2max
ACP(B+->pitautau) $A_\text{CP}(B^\pm\to \pi^\pm \tau^+\tau^-)$ Direct CP asymmetry in $B^\pm\to \pi^\pm \tau^+\tau^-$ q2
AFB(B+->pitautau) $A_\text{FB}(B^\pm\to \pi^\pm \tau^+\tau^-)$ Forward-backward asymmetry in $B^\pm\to \pi^\pm \tau^+\tau^-$ q2
BR(B+->pitautau) $\text{BR}(B^\pm\to \pi^\pm \tau^+\tau^-)$ Branching ratio of $B^\pm\to \pi^\pm \tau^+\tau^-$  
FH(B+->pitautau) $F_H(B^\pm\to \pi^\pm \tau^+\tau^-)$ Flat term in $B^\pm\to \pi^\pm \tau^+\tau^-$ q2
Rtaumu(B+->pill) $R_{\tau \mu}(B^\pm\to \pi^\pm \ell^+\ell^-)$ Ratio of differential branching ratios of $B^\pm\to \pi^\pm \tau^+ \tau^-$ and $B^\pm\to \pi^\pm \mu^+ \mu^-$ q2
dBR/dq2(B+->pitautau) $\frac{d\text{BR}}{dq^2}(B^\pm\to \pi^\pm \tau^+\tau^-)$ Differential branching ratio of $B^\pm\to \pi^\pm \tau^+\tau^-$ q2

$B^\pm\to \pi^\pm e^+e^-$

Name Symbol Description Arguments
<ACP>(B+->piee) $\langle A_\text{CP}\rangle(B^\pm\to \pi^\pm e^+e^-)$ Binned Direct CP asymmetry in $B^\pm\to \pi^\pm e^+e^-$ q2min, q2max
<AFB>(B+->piee) $\langle A_\text{FB}\rangle(B^\pm\to \pi^\pm e^+e^-)$ Binned forward-backward asymmetry in $B^\pm\to \pi^\pm e^+e^-$ q2min, q2max
<FH>(B+->piee) $\langle F_H\rangle(B^\pm\to \pi^\pm e^+e^-)$ Binned flat term in $B^\pm\to \pi^\pm e^+e^-$ q2min, q2max
<Rmue>(B+->pill) $\langle R_{\mu e} \rangle(B^\pm\to \pi^\pm \ell^+\ell^-)$ Ratio of partial branching ratios of $B^\pm\to \pi^\pm \mu^+ \mu^-$ and $B^\pm\to \pi^\pm e^+ e^-$ q2min, q2max
<dBR/dq2>(B+->piee) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^\pm\to \pi^\pm e^+e^-)$ Binned differential branching ratio of $B^\pm\to \pi^\pm e^+e^-$ q2min, q2max
ACP(B+->piee) $A_\text{CP}(B^\pm\to \pi^\pm e^+e^-)$ Direct CP asymmetry in $B^\pm\to \pi^\pm e^+e^-$ q2
AFB(B+->piee) $A_\text{FB}(B^\pm\to \pi^\pm e^+e^-)$ Forward-backward asymmetry in $B^\pm\to \pi^\pm e^+e^-$ q2
BR_Belle(B+->piee) $\text{BR}(B^\pm\to \pi^\pm e^+e^-)$ Branching ratio of $B^\pm\to \pi^\pm e^+e^-$  
FH(B+->piee) $F_H(B^\pm\to \pi^\pm e^+e^-)$ Flat term in $B^\pm\to \pi^\pm e^+e^-$ q2
Rmue(B+->pill) $R_{\mu e}(B^\pm\to \pi^\pm \ell^+\ell^-)$ Ratio of differential branching ratios of $B^\pm\to \pi^\pm \mu^+ \mu^-$ and $B^\pm\to \pi^\pm e^+ e^-$ q2
dBR/dq2(B+->piee) $\frac{d\text{BR}}{dq^2}(B^\pm\to \pi^\pm e^+e^-)$ Differential branching ratio of $B^\pm\to \pi^\pm e^+e^-$ q2

$\bar B^0\to \bar K^0 \mu^+\tau^-$

Name Symbol Description Arguments
BR(B0->Kmutau) $\text{BR}(\bar B^0\to \bar K^0 \mu^+\tau^-)$ Total branching ratio of $\bar B^0\to \bar K^0 \mu^+\tau^-$  

$\bar B^0\to \bar K^0 \mu^+e^-$

Name Symbol Description Arguments
BR(B0->Kmue) $\text{BR}(\bar B^0\to \bar K^0 \mu^+e^-)$ Total branching ratio of $\bar B^0\to \bar K^0 \mu^+e^-$  

$\bar B^0\to \bar K^0 \mu^\pm\tau^\mp$

Name Symbol Description Arguments
BR(B0->Kmutau,taumu) $\text{BR}(\bar B^0\to \bar K^0 \mu^\pm\tau^\mp)$ Total branching ratio of $\bar B^0\to \bar K^0 \mu^\pm\tau^\mp$  

$\bar B^0\to \bar K^0 \tau^+\mu^-$

Name Symbol Description Arguments
BR(B0->Ktaumu) $\text{BR}(\bar B^0\to \bar K^0 \tau^+\mu^-)$ Total branching ratio of $\bar B^0\to \bar K^0 \tau^+\mu^-$  

$\bar B^0\to \bar K^0 \tau^+e^-$

Name Symbol Description Arguments
BR(B0->Ktaue) $\text{BR}(\bar B^0\to \bar K^0 \tau^+e^-)$ Total branching ratio of $\bar B^0\to \bar K^0 \tau^+e^-$  

$\bar B^0\to \bar K^0 e^+\mu^-$

Name Symbol Description Arguments
BR(B0->Kemu) $\text{BR}(\bar B^0\to \bar K^0 e^+\mu^-)$ Total branching ratio of $\bar B^0\to \bar K^0 e^+\mu^-$  

$\bar B^0\to \bar K^0 e^+\tau^-$

Name Symbol Description Arguments
BR(B0->Ketau) $\text{BR}(\bar B^0\to \bar K^0 e^+\tau^-)$ Total branching ratio of $\bar B^0\to \bar K^0 e^+\tau^-$  

$\bar B^0\to \bar K^0 e^\pm\mu^\mp$

Name Symbol Description Arguments
BR(B0->Kemu,mue) $\text{BR}(\bar B^0\to \bar K^0 e^\pm\mu^\mp)$ Total branching ratio of $\bar B^0\to \bar K^0 e^\pm\mu^\mp$  

$\bar B^0\to \bar K^0 e^\pm\tau^\mp$

Name Symbol Description Arguments
BR(B0->Ketau,taue) $\text{BR}(\bar B^0\to \bar K^0 e^\pm\tau^\mp)$ Total branching ratio of $\bar B^0\to \bar K^0 e^\pm\tau^\mp$  

$\bar B^0\to \pi^0 \mu^+\tau^-$

Name Symbol Description Arguments
BR(B0->pimutau) $\text{BR}(\bar B^0\to \pi^0 \mu^+\tau^-)$ Total branching ratio of $\bar B^0\to \pi^0 \mu^+\tau^-$  

$\bar B^0\to \pi^0 \mu^+e^-$

Name Symbol Description Arguments
BR(B0->pimue) $\text{BR}(\bar B^0\to \pi^0 \mu^+e^-)$ Total branching ratio of $\bar B^0\to \pi^0 \mu^+e^-$  

$\bar B^0\to \pi^0 \mu^\pm\tau^\mp$

Name Symbol Description Arguments
BR(B0->pimutau,taumu) $\text{BR}(\bar B^0\to \pi^0 \mu^\pm\tau^\mp)$ Total branching ratio of $\bar B^0\to \pi^0 \mu^\pm\tau^\mp$  

$\bar B^0\to \pi^0 \tau^+\mu^-$

Name Symbol Description Arguments
BR(B0->pitaumu) $\text{BR}(\bar B^0\to \pi^0 \tau^+\mu^-)$ Total branching ratio of $\bar B^0\to \pi^0 \tau^+\mu^-$  

$\bar B^0\to \pi^0 \tau^+e^-$

Name Symbol Description Arguments
BR(B0->pitaue) $\text{BR}(\bar B^0\to \pi^0 \tau^+e^-)$ Total branching ratio of $\bar B^0\to \pi^0 \tau^+e^-$  

$\bar B^0\to \pi^0 e^+\mu^-$

Name Symbol Description Arguments
BR(B0->piemu) $\text{BR}(\bar B^0\to \pi^0 e^+\mu^-)$ Total branching ratio of $\bar B^0\to \pi^0 e^+\mu^-$  

$\bar B^0\to \pi^0 e^+\tau^-$

Name Symbol Description Arguments
BR(B0->pietau) $\text{BR}(\bar B^0\to \pi^0 e^+\tau^-)$ Total branching ratio of $\bar B^0\to \pi^0 e^+\tau^-$  

$\bar B^0\to \pi^0 e^\pm\mu^\mp$

Name Symbol Description Arguments
BR(B0->piemu,mue) $\text{BR}(\bar B^0\to \pi^0 e^\pm\mu^\mp)$ Total branching ratio of $\bar B^0\to \pi^0 e^\pm\mu^\mp$  

$\bar B^0\to \pi^0 e^\pm\tau^\mp$

Name Symbol Description Arguments
BR(B0->pietau,taue) $\text{BR}(\bar B^0\to \pi^0 e^\pm\tau^\mp)$ Total branching ratio of $\bar B^0\to \pi^0 e^\pm\tau^\mp$  

$\bar B^0\to \pi^0\mu^+\mu^-$

Name Symbol Description Arguments
<ACP>(B0->pimumu) $\langle A_\text{CP}\rangle(\bar B^0\to \pi^0\mu^+\mu^-)$ Binned Direct CP asymmetry in $\bar B^0\to \pi^0\mu^+\mu^-$ q2min, q2max
<AFB>(B0->pimumu) $\langle A_\text{FB}\rangle(\bar B^0\to \pi^0\mu^+\mu^-)$ Binned forward-backward asymmetry in $\bar B^0\to \pi^0\mu^+\mu^-$ q2min, q2max
<FH>(B0->pimumu) $\langle F_H\rangle(\bar B^0\to \pi^0\mu^+\mu^-)$ Binned flat term in $\bar B^0\to \pi^0\mu^+\mu^-$ q2min, q2max
<Rmue>(B0->pill) $\langle R_{\mu e} \rangle(\bar B^0\to \pi^0\ell^+\ell^-)$ Ratio of partial branching ratios of $\bar B^0\to \pi^0\mu^+ \mu^-$ and $\bar B^0\to \pi^0e^+ e^-$ q2min, q2max
<Rtaumu>(B0->pill) $\langle R_{\tau \mu} \rangle(\bar B^0\to \pi^0\ell^+\ell^-)$ Ratio of partial branching ratios of $\bar B^0\to \pi^0\tau^+ \tau^-$ and $\bar B^0\to \pi^0\mu^+ \mu^-$ q2min, q2max
<dBR/dq2>(B0->pimumu) $\langle \frac{d\text{BR}}{dq^2} \rangle(\bar B^0\to \pi^0\mu^+\mu^-)$ Binned differential branching ratio of $\bar B^0\to \pi^0\mu^+\mu^-$ q2min, q2max
ACP(B0->pimumu) $A_\text{CP}(\bar B^0\to \pi^0\mu^+\mu^-)$ Direct CP asymmetry in $\bar B^0\to \pi^0\mu^+\mu^-$ q2
AFB(B0->pimumu) $A_\text{FB}(\bar B^0\to \pi^0\mu^+\mu^-)$ Forward-backward asymmetry in $\bar B^0\to \pi^0\mu^+\mu^-$ q2
FH(B0->pimumu) $F_H(\bar B^0\to \pi^0\mu^+\mu^-)$ Flat term in $\bar B^0\to \pi^0\mu^+\mu^-$ q2
Rmue(B0->pill) $R_{\mu e}(\bar B^0\to \pi^0\ell^+\ell^-)$ Ratio of differential branching ratios of $\bar B^0\to \pi^0\mu^+ \mu^-$ and $\bar B^0\to \pi^0e^+ e^-$ q2
Rtaumu(B0->pill) $R_{\tau \mu}(\bar B^0\to \pi^0\ell^+\ell^-)$ Ratio of differential branching ratios of $\bar B^0\to \pi^0\tau^+ \tau^-$ and $\bar B^0\to \pi^0\mu^+ \mu^-$ q2
dBR/dq2(B0->pimumu) $\frac{d\text{BR}}{dq^2}(\bar B^0\to \pi^0\mu^+\mu^-)$ Differential branching ratio of $\bar B^0\to \pi^0\mu^+\mu^-$ q2

$\bar B^0\to \pi^0\tau^+\tau^-$

Name Symbol Description Arguments
<ACP>(B0->pitautau) $\langle A_\text{CP}\rangle(\bar B^0\to \pi^0\tau^+\tau^-)$ Binned Direct CP asymmetry in $\bar B^0\to \pi^0\tau^+\tau^-$ q2min, q2max
<AFB>(B0->pitautau) $\langle A_\text{FB}\rangle(\bar B^0\to \pi^0\tau^+\tau^-)$ Binned forward-backward asymmetry in $\bar B^0\to \pi^0\tau^+\tau^-$ q2min, q2max
<FH>(B0->pitautau) $\langle F_H\rangle(\bar B^0\to \pi^0\tau^+\tau^-)$ Binned flat term in $\bar B^0\to \pi^0\tau^+\tau^-$ q2min, q2max
<Rtaumu>(B0->pill) $\langle R_{\tau \mu} \rangle(\bar B^0\to \pi^0\ell^+\ell^-)$ Ratio of partial branching ratios of $\bar B^0\to \pi^0\tau^+ \tau^-$ and $\bar B^0\to \pi^0\mu^+ \mu^-$ q2min, q2max
<dBR/dq2>(B0->pitautau) $\langle \frac{d\text{BR}}{dq^2} \rangle(\bar B^0\to \pi^0\tau^+\tau^-)$ Binned differential branching ratio of $\bar B^0\to \pi^0\tau^+\tau^-$ q2min, q2max
ACP(B0->pitautau) $A_\text{CP}(\bar B^0\to \pi^0\tau^+\tau^-)$ Direct CP asymmetry in $\bar B^0\to \pi^0\tau^+\tau^-$ q2
AFB(B0->pitautau) $A_\text{FB}(\bar B^0\to \pi^0\tau^+\tau^-)$ Forward-backward asymmetry in $\bar B^0\to \pi^0\tau^+\tau^-$ q2
BR(B0->pitautau) $\text{BR}(\bar B^0\to \pi^0\tau^+\tau^-)$ Branching ratio of $\bar B^0\to \pi^0\tau^+\tau^-$  
FH(B0->pitautau) $F_H(\bar B^0\to \pi^0\tau^+\tau^-)$ Flat term in $\bar B^0\to \pi^0\tau^+\tau^-$ q2
Rtaumu(B0->pill) $R_{\tau \mu}(\bar B^0\to \pi^0\ell^+\ell^-)$ Ratio of differential branching ratios of $\bar B^0\to \pi^0\tau^+ \tau^-$ and $\bar B^0\to \pi^0\mu^+ \mu^-$ q2
dBR/dq2(B0->pitautau) $\frac{d\text{BR}}{dq^2}(\bar B^0\to \pi^0\tau^+\tau^-)$ Differential branching ratio of $\bar B^0\to \pi^0\tau^+\tau^-$ q2

$\bar B^0\to \pi^0e^+e^-$

Name Symbol Description Arguments
<ACP>(B0->piee) $\langle A_\text{CP}\rangle(\bar B^0\to \pi^0e^+e^-)$ Binned Direct CP asymmetry in $\bar B^0\to \pi^0e^+e^-$ q2min, q2max
<AFB>(B0->piee) $\langle A_\text{FB}\rangle(\bar B^0\to \pi^0e^+e^-)$ Binned forward-backward asymmetry in $\bar B^0\to \pi^0e^+e^-$ q2min, q2max
<FH>(B0->piee) $\langle F_H\rangle(\bar B^0\to \pi^0e^+e^-)$ Binned flat term in $\bar B^0\to \pi^0e^+e^-$ q2min, q2max
<Rmue>(B0->pill) $\langle R_{\mu e} \rangle(\bar B^0\to \pi^0\ell^+\ell^-)$ Ratio of partial branching ratios of $\bar B^0\to \pi^0\mu^+ \mu^-$ and $\bar B^0\to \pi^0e^+ e^-$ q2min, q2max
<dBR/dq2>(B0->piee) $\langle \frac{d\text{BR}}{dq^2} \rangle(\bar B^0\to \pi^0e^+e^-)$ Binned differential branching ratio of $\bar B^0\to \pi^0e^+e^-$ q2min, q2max
ACP(B0->piee) $A_\text{CP}(\bar B^0\to \pi^0e^+e^-)$ Direct CP asymmetry in $\bar B^0\to \pi^0e^+e^-$ q2
AFB(B0->piee) $A_\text{FB}(\bar B^0\to \pi^0e^+e^-)$ Forward-backward asymmetry in $\bar B^0\to \pi^0e^+e^-$ q2
FH(B0->piee) $F_H(\bar B^0\to \pi^0e^+e^-)$ Flat term in $\bar B^0\to \pi^0e^+e^-$ q2
Rmue(B0->pill) $R_{\mu e}(\bar B^0\to \pi^0\ell^+\ell^-)$ Ratio of differential branching ratios of $\bar B^0\to \pi^0\mu^+ \mu^-$ and $\bar B^0\to \pi^0e^+ e^-$ q2
dBR/dq2(B0->piee) $\frac{d\text{BR}}{dq^2}(\bar B^0\to \pi^0e^+e^-)$ Differential branching ratio of $\bar B^0\to \pi^0e^+e^-$ q2

$B\to P\nu\bar\nu$

$B^+\to K^+\nu\bar\nu$

Name Symbol Description Arguments
<dBR/dq2>(B+->Knunu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^+\to K^+\nu\bar\nu)$ Binned differential branching ratio of $B^+\to K^+\nu\bar\nu$ q2min, q2max
BR(B+->Knunu) $\text{BR}(B^+\to K^+\nu\bar\nu)$ Branching ratio of $B^+\to K^+\nu\bar\nu)$  
dBR/dq2(B+->Knunu) $\frac{d\text{BR}}{dq^2}(B^+\to K^+\nu\bar\nu)$ Differential branching ratio of $B^+\to K^+\nu\bar\nu$ q2

$B^+\to \pi^+\nu\bar\nu$

Name Symbol Description Arguments
<dBR/dq2>(B+->pinunu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^+\to \pi^+\nu\bar\nu)$ Binned differential branching ratio of $B^+\to \pi^+\nu\bar\nu$ q2min, q2max
BR(B+->pinunu) $\text{BR}(B^+\to \pi^+\nu\bar\nu)$ Branching ratio of $B^+\to \pi^+\nu\bar\nu)$  
dBR/dq2(B+->pinunu) $\frac{d\text{BR}}{dq^2}(B^+\to \pi^+\nu\bar\nu)$ Differential branching ratio of $B^+\to \pi^+\nu\bar\nu$ q2

$B^0\to K^0\nu\bar\nu$

Name Symbol Description Arguments
<dBR/dq2>(B0->Knunu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^0\to K^0\nu\bar\nu)$ Binned differential branching ratio of $B^0\to K^0\nu\bar\nu$ q2min, q2max
BR(B0->Knunu) $\text{BR}(B^0\to K^0\nu\bar\nu)$ Branching ratio of $B^0\to K^0\nu\bar\nu)$  
dBR/dq2(B0->Knunu) $\frac{d\text{BR}}{dq^2}(B^0\to K^0\nu\bar\nu)$ Differential branching ratio of $B^0\to K^0\nu\bar\nu$ q2

$B^0\to \pi^0\nu\bar\nu$

Name Symbol Description Arguments
<dBR/dq2>(B0->pinunu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^0\to \pi^0\nu\bar\nu)$ Binned differential branching ratio of $B^0\to \pi^0\nu\bar\nu$ q2min, q2max
BR(B0->pinunu) $\text{BR}(B^0\to \pi^0\nu\bar\nu)$ Branching ratio of $B^0\to \pi^0\nu\bar\nu)$  
dBR/dq2(B0->pinunu) $\frac{d\text{BR}}{dq^2}(B^0\to \pi^0\nu\bar\nu)$ Differential branching ratio of $B^0\to \pi^0\nu\bar\nu$ q2

$B\to V\ell^+\ell^-$

$B^+\to K^{\ast +}\mu^+\mu^-$

Name Symbol Description Arguments
<A3>(B+->K*mumu) $\langle A_3\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<A4>(B+->K*mumu) $\langle A_4\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<A5>(B+->K*mumu) $\langle A_5\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<A6s>(B+->K*mumu) $\langle A_6^s\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<A7>(B+->K*mumu) $\langle A_7\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<A8>(B+->K*mumu) $\langle A_8\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<A9>(B+->K*mumu) $\langle A_9\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<ACP>(B+->K*mumu) $\langle A_\text{CP}\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned Direct CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<AFB>(B+->K*mumu) $\langle A_\text{FB}\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned forward-backward asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<ATIm>(B+->K*mumu) $\langle A_T^\text{Im}\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned Transverse CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<FL>(B+->K*mumu) $\langle F_L\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned longitudinal polarization fraction in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<P1>(B+->K*mumu) $\langle P_1\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<P2>(B+->K*mumu) $\langle P_2\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<P3>(B+->K*mumu) $\langle P_3\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<P4p>(B+->K*mumu) $\langle P_4^\prime\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<P5p>(B+->K*mumu) $\langle P_5^\prime\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<P6p>(B+->K*mumu) $\langle P_6^\prime\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<P8p>(B+->K*mumu) $\langle P_8^\prime\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<Rmue>(B+->K*ll) $\langle R_{\mu e} \rangle(B^+\to K^{\ast +}\ell^+\ell^-)$ Ratio of partial branching ratios of $B^+\to K^{\ast +}\mu^+ \mu^-$ and $B^+\to K^{\ast +}e^+ e^-$ q2min, q2max
<Rtaumu>(B+->K*ll) $\langle R_{\tau \mu} \rangle(B^+\to K^{\ast +}\ell^+\ell^-)$ Ratio of partial branching ratios of $B^+\to K^{\ast +}\tau^+ \tau^-$ and $B^+\to K^{\ast +}\mu^+ \mu^-$ q2min, q2max
<S3>(B+->K*mumu) $\langle S_3\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<S4>(B+->K*mumu) $\langle S_4\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<S5>(B+->K*mumu) $\langle S_5\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<S6c>(B+->K*mumu) $\langle S_6^c\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<S7>(B+->K*mumu) $\langle S_7\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<S8>(B+->K*mumu) $\langle S_8\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<S9>(B+->K*mumu) $\langle S_9\rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
<dBR/dq2>(B+->K*mumu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^+\to K^{\ast +}\mu^+\mu^-)$ Binned differential branching ratio of $B^+\to K^{\ast +}\mu^+\mu^-$ q2min, q2max
A3(B+->K*mumu) $A_3(B^+\to K^{\ast +}\mu^+\mu^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
A4(B+->K*mumu) $A_4(B^+\to K^{\ast +}\mu^+\mu^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
A5(B+->K*mumu) $A_5(B^+\to K^{\ast +}\mu^+\mu^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
A6s(B+->K*mumu) $A_6^s(B^+\to K^{\ast +}\mu^+\mu^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
A7(B+->K*mumu) $A_7(B^+\to K^{\ast +}\mu^+\mu^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
A8(B+->K*mumu) $A_8(B^+\to K^{\ast +}\mu^+\mu^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
A9(B+->K*mumu) $A_9(B^+\to K^{\ast +}\mu^+\mu^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
ACP(B+->K*mumu) $A_\text{CP}(B^+\to K^{\ast +}\mu^+\mu^-)$ Direct CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
AFB(B+->K*mumu) $A_\text{FB}(B^+\to K^{\ast +}\mu^+\mu^-)$ Forward-backward asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
ATIm(B+->K*mumu) $A_T^\text{Im}(B^+\to K^{\ast +}\mu^+\mu^-)$ Transverse CP asymmetry in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
FL(B+->K*mumu) $F_L(B^+\to K^{\ast +}\mu^+\mu^-)$ Longitudinal polarization fraction in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
P1(B+->K*mumu) $P_1(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
P2(B+->K*mumu) $P_2(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
P3(B+->K*mumu) $P_3(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
P4p(B+->K*mumu) $P_4^\prime(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
P5p(B+->K*mumu) $P_5^\prime(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
P6p(B+->K*mumu) $P_6^\prime(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
P8p(B+->K*mumu) $P_8^\prime(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
Rmue(B+->K*ll) $R_{\mu e} (B^+\to K^{\ast +}\ell^+\ell^-)$ Ratio of differential branching ratios of $B^+\to K^{\ast +}\mu^+ \mu^-$ and $B^+\to K^{\ast +}e^+ e^-$ q2
Rtaumu(B+->K*ll) $R_{\tau \mu} (B^+\to K^{\ast +}\ell^+\ell^-)$ Ratio of differential branching ratios of $B^+\to K^{\ast +}\tau^+ \tau^-$ and $B^+\to K^{\ast +}\mu^+ \mu^-$ q2
S3(B+->K*mumu) $S_3(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
S4(B+->K*mumu) $S_4(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
S5(B+->K*mumu) $S_5(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
S6c(B+->K*mumu) $S_6^c(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
S7(B+->K*mumu) $S_7(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
S8(B+->K*mumu) $S_8(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
S9(B+->K*mumu) $S_9(B^+\to K^{\ast +}\mu^+\mu^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\mu^+\mu^-$ q2
dBR/dq2(B+->K*mumu) $\frac{d\text{BR}}{dq^2}(B^+\to K^{\ast +}\mu^+\mu^-)$ Differential branching ratio of $B^+\to K^{\ast +}\mu^+\mu^-$ q2

$B^+\to K^{\ast +}\tau^+\tau^-$

Name Symbol Description Arguments
<A3>(B+->K*tautau) $\langle A_3\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<A4>(B+->K*tautau) $\langle A_4\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<A5>(B+->K*tautau) $\langle A_5\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<A6s>(B+->K*tautau) $\langle A_6^s\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<A7>(B+->K*tautau) $\langle A_7\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<A8>(B+->K*tautau) $\langle A_8\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<A9>(B+->K*tautau) $\langle A_9\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<ACP>(B+->K*tautau) $\langle A_\text{CP}\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned Direct CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<AFB>(B+->K*tautau) $\langle A_\text{FB}\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned forward-backward asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<ATIm>(B+->K*tautau) $\langle A_T^\text{Im}\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned Transverse CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<FL>(B+->K*tautau) $\langle F_L\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned longitudinal polarization fraction in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<P1>(B+->K*tautau) $\langle P_1\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<P2>(B+->K*tautau) $\langle P_2\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<P3>(B+->K*tautau) $\langle P_3\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<P4p>(B+->K*tautau) $\langle P_4^\prime\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<P5p>(B+->K*tautau) $\langle P_5^\prime\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<P6p>(B+->K*tautau) $\langle P_6^\prime\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<P8p>(B+->K*tautau) $\langle P_8^\prime\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<Rtaumu>(B+->K*ll) $\langle R_{\tau \mu} \rangle(B^+\to K^{\ast +}\ell^+\ell^-)$ Ratio of partial branching ratios of $B^+\to K^{\ast +}\tau^+ \tau^-$ and $B^+\to K^{\ast +}\mu^+ \mu^-$ q2min, q2max
<S3>(B+->K*tautau) $\langle S_3\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<S4>(B+->K*tautau) $\langle S_4\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<S5>(B+->K*tautau) $\langle S_5\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<S6c>(B+->K*tautau) $\langle S_6^c\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<S7>(B+->K*tautau) $\langle S_7\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<S8>(B+->K*tautau) $\langle S_8\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<S9>(B+->K*tautau) $\langle S_9\rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
<dBR/dq2>(B+->K*tautau) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^+\to K^{\ast +}\tau^+\tau^-)$ Binned differential branching ratio of $B^+\to K^{\ast +}\tau^+\tau^-$ q2min, q2max
A3(B+->K*tautau) $A_3(B^+\to K^{\ast +}\tau^+\tau^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
A4(B+->K*tautau) $A_4(B^+\to K^{\ast +}\tau^+\tau^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
A5(B+->K*tautau) $A_5(B^+\to K^{\ast +}\tau^+\tau^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
A6s(B+->K*tautau) $A_6^s(B^+\to K^{\ast +}\tau^+\tau^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
A7(B+->K*tautau) $A_7(B^+\to K^{\ast +}\tau^+\tau^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
A8(B+->K*tautau) $A_8(B^+\to K^{\ast +}\tau^+\tau^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
A9(B+->K*tautau) $A_9(B^+\to K^{\ast +}\tau^+\tau^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
ACP(B+->K*tautau) $A_\text{CP}(B^+\to K^{\ast +}\tau^+\tau^-)$ Direct CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
AFB(B+->K*tautau) $A_\text{FB}(B^+\to K^{\ast +}\tau^+\tau^-)$ Forward-backward asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
ATIm(B+->K*tautau) $A_T^\text{Im}(B^+\to K^{\ast +}\tau^+\tau^-)$ Transverse CP asymmetry in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
FL(B+->K*tautau) $F_L(B^+\to K^{\ast +}\tau^+\tau^-)$ Longitudinal polarization fraction in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
P1(B+->K*tautau) $P_1(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
P2(B+->K*tautau) $P_2(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
P3(B+->K*tautau) $P_3(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
P4p(B+->K*tautau) $P_4^\prime(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
P5p(B+->K*tautau) $P_5^\prime(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
P6p(B+->K*tautau) $P_6^\prime(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
P8p(B+->K*tautau) $P_8^\prime(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
Rtaumu(B+->K*ll) $R_{\tau \mu} (B^+\to K^{\ast +}\ell^+\ell^-)$ Ratio of differential branching ratios of $B^+\to K^{\ast +}\tau^+ \tau^-$ and $B^+\to K^{\ast +}\mu^+ \mu^-$ q2
S3(B+->K*tautau) $S_3(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
S4(B+->K*tautau) $S_4(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
S5(B+->K*tautau) $S_5(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
S6c(B+->K*tautau) $S_6^c(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
S7(B+->K*tautau) $S_7(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
S8(B+->K*tautau) $S_8(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
S9(B+->K*tautau) $S_9(B^+\to K^{\ast +}\tau^+\tau^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}\tau^+\tau^-$ q2
dBR/dq2(B+->K*tautau) $\frac{d\text{BR}}{dq^2}(B^+\to K^{\ast +}\tau^+\tau^-)$ Differential branching ratio of $B^+\to K^{\ast +}\tau^+\tau^-$ q2

$B^+\to K^{\ast +}e^+e^-$

Name Symbol Description Arguments
<A3>(B+->K*ee) $\langle A_3\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<A4>(B+->K*ee) $\langle A_4\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<A5>(B+->K*ee) $\langle A_5\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<A6s>(B+->K*ee) $\langle A_6^s\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<A7>(B+->K*ee) $\langle A_7\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<A8>(B+->K*ee) $\langle A_8\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<A9>(B+->K*ee) $\langle A_9\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<ACP>(B+->K*ee) $\langle A_\text{CP}\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned Direct CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<AFB>(B+->K*ee) $\langle A_\text{FB}\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned forward-backward asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<ATIm>(B+->K*ee) $\langle A_T^\text{Im}\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned Transverse CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<FL>(B+->K*ee) $\langle F_L\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned longitudinal polarization fraction in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<P1>(B+->K*ee) $\langle P_1\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<P2>(B+->K*ee) $\langle P_2\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<P3>(B+->K*ee) $\langle P_3\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<P4p>(B+->K*ee) $\langle P_4^\prime\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<P5p>(B+->K*ee) $\langle P_5^\prime\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<P6p>(B+->K*ee) $\langle P_6^\prime\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<P8p>(B+->K*ee) $\langle P_8^\prime\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<Rmue>(B+->K*ll) $\langle R_{\mu e} \rangle(B^+\to K^{\ast +}\ell^+\ell^-)$ Ratio of partial branching ratios of $B^+\to K^{\ast +}\mu^+ \mu^-$ and $B^+\to K^{\ast +}e^+ e^-$ q2min, q2max
<S3>(B+->K*ee) $\langle S_3\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<S4>(B+->K*ee) $\langle S_4\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<S5>(B+->K*ee) $\langle S_5\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<S6c>(B+->K*ee) $\langle S_6^c\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<S7>(B+->K*ee) $\langle S_7\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<S8>(B+->K*ee) $\langle S_8\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<S9>(B+->K*ee) $\langle S_9\rangle(B^+\to K^{\ast +}e^+e^-)$ Binned CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
<dBR/dq2>(B+->K*ee) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^+\to K^{\ast +}e^+e^-)$ Binned differential branching ratio of $B^+\to K^{\ast +}e^+e^-$ q2min, q2max
A3(B+->K*ee) $A_3(B^+\to K^{\ast +}e^+e^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2
A4(B+->K*ee) $A_4(B^+\to K^{\ast +}e^+e^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2
A5(B+->K*ee) $A_5(B^+\to K^{\ast +}e^+e^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2
A6s(B+->K*ee) $A_6^s(B^+\to K^{\ast +}e^+e^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2
A7(B+->K*ee) $A_7(B^+\to K^{\ast +}e^+e^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2
A8(B+->K*ee) $A_8(B^+\to K^{\ast +}e^+e^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2
A9(B+->K*ee) $A_9(B^+\to K^{\ast +}e^+e^-)$ Angular CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2
ACP(B+->K*ee) $A_\text{CP}(B^+\to K^{\ast +}e^+e^-)$ Direct CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2
AFB(B+->K*ee) $A_\text{FB}(B^+\to K^{\ast +}e^+e^-)$ Forward-backward asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2
ATIm(B+->K*ee) $A_T^\text{Im}(B^+\to K^{\ast +}e^+e^-)$ Transverse CP asymmetry in $B^+\to K^{\ast +}e^+e^-$ q2
FL(B+->K*ee) $F_L(B^+\to K^{\ast +}e^+e^-)$ Longitudinal polarization fraction in $B^+\to K^{\ast +}e^+e^-$ q2
P1(B+->K*ee) $P_1(B^+\to K^{\ast +}e^+e^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
P2(B+->K*ee) $P_2(B^+\to K^{\ast +}e^+e^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
P3(B+->K*ee) $P_3(B^+\to K^{\ast +}e^+e^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
P4p(B+->K*ee) $P_4^\prime(B^+\to K^{\ast +}e^+e^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
P5p(B+->K*ee) $P_5^\prime(B^+\to K^{\ast +}e^+e^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
P6p(B+->K*ee) $P_6^\prime(B^+\to K^{\ast +}e^+e^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
P8p(B+->K*ee) $P_8^\prime(B^+\to K^{\ast +}e^+e^-)$ CP-averaged “optimized” angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
Rmue(B+->K*ll) $R_{\mu e} (B^+\to K^{\ast +}\ell^+\ell^-)$ Ratio of differential branching ratios of $B^+\to K^{\ast +}\mu^+ \mu^-$ and $B^+\to K^{\ast +}e^+ e^-$ q2
S3(B+->K*ee) $S_3(B^+\to K^{\ast +}e^+e^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
S4(B+->K*ee) $S_4(B^+\to K^{\ast +}e^+e^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
S5(B+->K*ee) $S_5(B^+\to K^{\ast +}e^+e^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
S6c(B+->K*ee) $S_6^c(B^+\to K^{\ast +}e^+e^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
S7(B+->K*ee) $S_7(B^+\to K^{\ast +}e^+e^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
S8(B+->K*ee) $S_8(B^+\to K^{\ast +}e^+e^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
S9(B+->K*ee) $S_9(B^+\to K^{\ast +}e^+e^-)$ CP-averaged angular observable in $B^+\to K^{\ast +}e^+e^-$ q2
dBR/dq2(B+->K*ee) $\frac{d\text{BR}}{dq^2}(B^+\to K^{\ast +}e^+e^-)$ Differential branching ratio of $B^+\to K^{\ast +}e^+e^-$ q2

$B^-\to K^{*-} \mu^+\tau^-$

Name Symbol Description Arguments
BR(B+->K*mutau) $\text{BR}(B^-\to K^{*-} \mu^+\tau^-)$ Total branching ratio of $B^-\to K^{*-} \mu^+\tau^-$  

$B^-\to K^{*-} \mu^+e^-$

Name Symbol Description Arguments
BR(B+->K*mue) $\text{BR}(B^-\to K^{*-} \mu^+e^-)$ Total branching ratio of $B^-\to K^{*-} \mu^+e^-$  

$B^-\to K^{*-} \tau^+\mu^-$

Name Symbol Description Arguments
BR(B+->K*taumu) $\text{BR}(B^-\to K^{*-} \tau^+\mu^-)$ Total branching ratio of $B^-\to K^{*-} \tau^+\mu^-$  

$B^-\to K^{*-} \tau^+e^-$

Name Symbol Description Arguments
BR(B+->K*taue) $\text{BR}(B^-\to K^{*-} \tau^+e^-)$ Total branching ratio of $B^-\to K^{*-} \tau^+e^-$  

$B^-\to K^{*-} e^+\mu^-$

Name Symbol Description Arguments
BR(B+->K*emu) $\text{BR}(B^-\to K^{*-} e^+\mu^-)$ Total branching ratio of $B^-\to K^{*-} e^+\mu^-$  

$B^-\to K^{*-} e^+\tau^-$

Name Symbol Description Arguments
BR(B+->K*etau) $\text{BR}(B^-\to K^{*-} e^+\tau^-)$ Total branching ratio of $B^-\to K^{*-} e^+\tau^-$  

$B^-\to \rho^{-} \mu^+\tau^-$

Name Symbol Description Arguments
BR(B+->rhomutau) $\text{BR}(B^-\to \rho^{-} \mu^+\tau^-)$ Total branching ratio of $B^-\to \rho^{-} \mu^+\tau^-$  

$B^-\to \rho^{-} \mu^+e^-$

Name Symbol Description Arguments
BR(B+->rhomue) $\text{BR}(B^-\to \rho^{-} \mu^+e^-)$ Total branching ratio of $B^-\to \rho^{-} \mu^+e^-$  

$B^-\to \rho^{-} \tau^+\mu^-$

Name Symbol Description Arguments
BR(B+->rhotaumu) $\text{BR}(B^-\to \rho^{-} \tau^+\mu^-)$ Total branching ratio of $B^-\to \rho^{-} \tau^+\mu^-$  

$B^-\to \rho^{-} \tau^+e^-$

Name Symbol Description Arguments
BR(B+->rhotaue) $\text{BR}(B^-\to \rho^{-} \tau^+e^-)$ Total branching ratio of $B^-\to \rho^{-} \tau^+e^-$  

$B^-\to \rho^{-} e^+\mu^-$

Name Symbol Description Arguments
BR(B+->rhoemu) $\text{BR}(B^-\to \rho^{-} e^+\mu^-)$ Total branching ratio of $B^-\to \rho^{-} e^+\mu^-$  

$B^-\to \rho^{-} e^+\tau^-$

Name Symbol Description Arguments
BR(B+->rhoetau) $\text{BR}(B^-\to \rho^{-} e^+\tau^-)$ Total branching ratio of $B^-\to \rho^{-} e^+\tau^-$  

$B^0\to K^{\ast 0}\mu^+\mu^-$

Name Symbol Description Arguments
<A3>(B0->K*mumu) $\langle A_3\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<A4>(B0->K*mumu) $\langle A_4\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<A5>(B0->K*mumu) $\langle A_5\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<A6s>(B0->K*mumu) $\langle A_6^s\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<A7>(B0->K*mumu) $\langle A_7\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<A8>(B0->K*mumu) $\langle A_8\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<A9>(B0->K*mumu) $\langle A_9\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<ACP>(B0->K*mumu) $\langle A_\text{CP}\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned Direct CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<AFB>(B0->K*mumu) $\langle A_\text{FB}\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned forward-backward asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<ATIm>(B0->K*mumu) $\langle A_T^\text{Im}\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned Transverse CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<Dmue_AFB>(B0->K*ll) $\langle D_{A_\text{FB}}^{\mu e} \rangle(B^0\to K^{\ast 0}\ell^+\ell^-)$ Binned difference of angular observable $A_\text{FB}$ in $B^0\to K^{\ast 0}\mu^+\mu^-$ and $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<Dmue_P4p>(B0->K*ll) $\langle D_{P_4^\prime}^{\mu e} \rangle(B^0\to K^{\ast 0}\ell^+\ell^-)$ Binned difference of angular observable $P_4^\prime$ in $B^0\to K^{\ast 0}\mu^+\mu^-$ and $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<Dmue_P5p>(B0->K*ll) $\langle D_{P_5^\prime}^{\mu e} \rangle(B^0\to K^{\ast 0}\ell^+\ell^-)$ Binned difference of angular observable $P_5^\prime$ in $B^0\to K^{\ast 0}\mu^+\mu^-$ and $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<FL>(B0->K*mumu) $\langle F_L\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned longitudinal polarization fraction in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<P1>(B0->K*mumu) $\langle P_1\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<P2>(B0->K*mumu) $\langle P_2\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<P3>(B0->K*mumu) $\langle P_3\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<P4p>(B0->K*mumu) $\langle P_4^\prime\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<P5p>(B0->K*mumu) $\langle P_5^\prime\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<P6p>(B0->K*mumu) $\langle P_6^\prime\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<P8p>(B0->K*mumu) $\langle P_8^\prime\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<Rmue>(B0->K*ll) $\langle R_{\mu e} \rangle(B^0\to K^{\ast 0}\ell^+\ell^-)$ Ratio of partial branching ratios of $B^0\to K^{\ast 0}\mu^+ \mu^-$ and $B^0\to K^{\ast 0}e^+ e^-$ q2min, q2max
<Rtaumu>(B0->K*ll) $\langle R_{\tau \mu} \rangle(B^0\to K^{\ast 0}\ell^+\ell^-)$ Ratio of partial branching ratios of $B^0\to K^{\ast 0}\tau^+ \tau^-$ and $B^0\to K^{\ast 0}\mu^+ \mu^-$ q2min, q2max
<S3>(B0->K*mumu) $\langle S_3\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<S4>(B0->K*mumu) $\langle S_4\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<S5>(B0->K*mumu) $\langle S_5\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<S6c>(B0->K*mumu) $\langle S_6^c\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<S7>(B0->K*mumu) $\langle S_7\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<S8>(B0->K*mumu) $\langle S_8\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<S9>(B0->K*mumu) $\langle S_9\rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
<dBR/dq2>(B0->K*mumu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^0\to K^{\ast 0}\mu^+\mu^-)$ Binned differential branching ratio of $B^0\to K^{\ast 0}\mu^+\mu^-$ q2min, q2max
A3(B0->K*mumu) $A_3(B^0\to K^{\ast 0}\mu^+\mu^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
A4(B0->K*mumu) $A_4(B^0\to K^{\ast 0}\mu^+\mu^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
A5(B0->K*mumu) $A_5(B^0\to K^{\ast 0}\mu^+\mu^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
A6s(B0->K*mumu) $A_6^s(B^0\to K^{\ast 0}\mu^+\mu^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
A7(B0->K*mumu) $A_7(B^0\to K^{\ast 0}\mu^+\mu^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
A8(B0->K*mumu) $A_8(B^0\to K^{\ast 0}\mu^+\mu^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
A9(B0->K*mumu) $A_9(B^0\to K^{\ast 0}\mu^+\mu^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
ACP(B0->K*mumu) $A_\text{CP}(B^0\to K^{\ast 0}\mu^+\mu^-)$ Direct CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
AFB(B0->K*mumu) $A_\text{FB}(B^0\to K^{\ast 0}\mu^+\mu^-)$ Forward-backward asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
ATIm(B0->K*mumu) $A_T^\text{Im}(B^0\to K^{\ast 0}\mu^+\mu^-)$ Transverse CP asymmetry in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
Dmue_AFB(B0->K*ll) $D_{A_\text{FB}}^{\mu e}(B^0\to K^{\ast 0}\ell^+\ell^-)$ Difference of angular observable $A_\text{FB}$ in $B^0\to K^{\ast 0}\mu^+\mu^-$ and $B^0\to K^{\ast 0}e^+e^-$ q2
Dmue_P4p(B0->K*ll) $D_{P_4^\prime}^{\mu e}(B^0\to K^{\ast 0}\ell^+\ell^-)$ Difference of angular observable $P_4^\prime$ in $B^0\to K^{\ast 0}\mu^+\mu^-$ and $B^0\to K^{\ast 0}e^+e^-$ q2
Dmue_P5p(B0->K*ll) $D_{P_5^\prime}^{\mu e}(B^0\to K^{\ast 0}\ell^+\ell^-)$ Difference of angular observable $P_5^\prime$ in $B^0\to K^{\ast 0}\mu^+\mu^-$ and $B^0\to K^{\ast 0}e^+e^-$ q2
FL(B0->K*mumu) $F_L(B^0\to K^{\ast 0}\mu^+\mu^-)$ Longitudinal polarization fraction in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
P1(B0->K*mumu) $P_1(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
P2(B0->K*mumu) $P_2(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
P3(B0->K*mumu) $P_3(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
P4p(B0->K*mumu) $P_4^\prime(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
P5p(B0->K*mumu) $P_5^\prime(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
P6p(B0->K*mumu) $P_6^\prime(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
P8p(B0->K*mumu) $P_8^\prime(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
Rmue(B0->K*ll) $R_{\mu e} (B^0\to K^{\ast 0}\ell^+\ell^-)$ Ratio of differential branching ratios of $B^0\to K^{\ast 0}\mu^+ \mu^-$ and $B^0\to K^{\ast 0}e^+ e^-$ q2
Rtaumu(B0->K*ll) $R_{\tau \mu} (B^0\to K^{\ast 0}\ell^+\ell^-)$ Ratio of differential branching ratios of $B^0\to K^{\ast 0}\tau^+ \tau^-$ and $B^0\to K^{\ast 0}\mu^+ \mu^-$ q2
S3(B0->K*mumu) $S_3(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
S4(B0->K*mumu) $S_4(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
S5(B0->K*mumu) $S_5(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
S6c(B0->K*mumu) $S_6^c(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
S7(B0->K*mumu) $S_7(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
S8(B0->K*mumu) $S_8(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
S9(B0->K*mumu) $S_9(B^0\to K^{\ast 0}\mu^+\mu^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\mu^+\mu^-$ q2
dBR/dq2(B0->K*mumu) $\frac{d\text{BR}}{dq^2}(B^0\to K^{\ast 0}\mu^+\mu^-)$ Differential branching ratio of $B^0\to K^{\ast 0}\mu^+\mu^-$ q2

$B^0\to K^{\ast 0}\tau^+\tau^-$

Name Symbol Description Arguments
<A3>(B0->K*tautau) $\langle A_3\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<A4>(B0->K*tautau) $\langle A_4\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<A5>(B0->K*tautau) $\langle A_5\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<A6s>(B0->K*tautau) $\langle A_6^s\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<A7>(B0->K*tautau) $\langle A_7\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<A8>(B0->K*tautau) $\langle A_8\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<A9>(B0->K*tautau) $\langle A_9\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<ACP>(B0->K*tautau) $\langle A_\text{CP}\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned Direct CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<AFB>(B0->K*tautau) $\langle A_\text{FB}\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned forward-backward asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<ATIm>(B0->K*tautau) $\langle A_T^\text{Im}\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned Transverse CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<FL>(B0->K*tautau) $\langle F_L\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned longitudinal polarization fraction in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<P1>(B0->K*tautau) $\langle P_1\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<P2>(B0->K*tautau) $\langle P_2\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<P3>(B0->K*tautau) $\langle P_3\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<P4p>(B0->K*tautau) $\langle P_4^\prime\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<P5p>(B0->K*tautau) $\langle P_5^\prime\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<P6p>(B0->K*tautau) $\langle P_6^\prime\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<P8p>(B0->K*tautau) $\langle P_8^\prime\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<Rtaumu>(B0->K*ll) $\langle R_{\tau \mu} \rangle(B^0\to K^{\ast 0}\ell^+\ell^-)$ Ratio of partial branching ratios of $B^0\to K^{\ast 0}\tau^+ \tau^-$ and $B^0\to K^{\ast 0}\mu^+ \mu^-$ q2min, q2max
<S3>(B0->K*tautau) $\langle S_3\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<S4>(B0->K*tautau) $\langle S_4\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<S5>(B0->K*tautau) $\langle S_5\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<S6c>(B0->K*tautau) $\langle S_6^c\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<S7>(B0->K*tautau) $\langle S_7\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<S8>(B0->K*tautau) $\langle S_8\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<S9>(B0->K*tautau) $\langle S_9\rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
<dBR/dq2>(B0->K*tautau) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^0\to K^{\ast 0}\tau^+\tau^-)$ Binned differential branching ratio of $B^0\to K^{\ast 0}\tau^+\tau^-$ q2min, q2max
A3(B0->K*tautau) $A_3(B^0\to K^{\ast 0}\tau^+\tau^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
A4(B0->K*tautau) $A_4(B^0\to K^{\ast 0}\tau^+\tau^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
A5(B0->K*tautau) $A_5(B^0\to K^{\ast 0}\tau^+\tau^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
A6s(B0->K*tautau) $A_6^s(B^0\to K^{\ast 0}\tau^+\tau^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
A7(B0->K*tautau) $A_7(B^0\to K^{\ast 0}\tau^+\tau^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
A8(B0->K*tautau) $A_8(B^0\to K^{\ast 0}\tau^+\tau^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
A9(B0->K*tautau) $A_9(B^0\to K^{\ast 0}\tau^+\tau^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
ACP(B0->K*tautau) $A_\text{CP}(B^0\to K^{\ast 0}\tau^+\tau^-)$ Direct CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
AFB(B0->K*tautau) $A_\text{FB}(B^0\to K^{\ast 0}\tau^+\tau^-)$ Forward-backward asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
ATIm(B0->K*tautau) $A_T^\text{Im}(B^0\to K^{\ast 0}\tau^+\tau^-)$ Transverse CP asymmetry in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
FL(B0->K*tautau) $F_L(B^0\to K^{\ast 0}\tau^+\tau^-)$ Longitudinal polarization fraction in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
P1(B0->K*tautau) $P_1(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
P2(B0->K*tautau) $P_2(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
P3(B0->K*tautau) $P_3(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
P4p(B0->K*tautau) $P_4^\prime(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
P5p(B0->K*tautau) $P_5^\prime(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
P6p(B0->K*tautau) $P_6^\prime(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
P8p(B0->K*tautau) $P_8^\prime(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
Rtaumu(B0->K*ll) $R_{\tau \mu} (B^0\to K^{\ast 0}\ell^+\ell^-)$ Ratio of differential branching ratios of $B^0\to K^{\ast 0}\tau^+ \tau^-$ and $B^0\to K^{\ast 0}\mu^+ \mu^-$ q2
S3(B0->K*tautau) $S_3(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
S4(B0->K*tautau) $S_4(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
S5(B0->K*tautau) $S_5(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
S6c(B0->K*tautau) $S_6^c(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
S7(B0->K*tautau) $S_7(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
S8(B0->K*tautau) $S_8(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
S9(B0->K*tautau) $S_9(B^0\to K^{\ast 0}\tau^+\tau^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}\tau^+\tau^-$ q2
dBR/dq2(B0->K*tautau) $\frac{d\text{BR}}{dq^2}(B^0\to K^{\ast 0}\tau^+\tau^-)$ Differential branching ratio of $B^0\to K^{\ast 0}\tau^+\tau^-$ q2

$B^0\to K^{\ast 0}e^+e^-$

Name Symbol Description Arguments
<A3>(B0->K*ee) $\langle A_3\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<A4>(B0->K*ee) $\langle A_4\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<A5>(B0->K*ee) $\langle A_5\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<A6s>(B0->K*ee) $\langle A_6^s\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<A7>(B0->K*ee) $\langle A_7\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<A8>(B0->K*ee) $\langle A_8\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<A9>(B0->K*ee) $\langle A_9\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<ACP>(B0->K*ee) $\langle A_\text{CP}\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned Direct CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<AFB>(B0->K*ee) $\langle A_\text{FB}\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned forward-backward asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<ATIm>(B0->K*ee) $\langle A_T^\text{Im}\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned Transverse CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<Dmue_AFB>(B0->K*ll) $\langle D_{A_\text{FB}}^{\mu e} \rangle(B^0\to K^{\ast 0}\ell^+\ell^-)$ Binned difference of angular observable $A_\text{FB}$ in $B^0\to K^{\ast 0}\mu^+\mu^-$ and $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<Dmue_P4p>(B0->K*ll) $\langle D_{P_4^\prime}^{\mu e} \rangle(B^0\to K^{\ast 0}\ell^+\ell^-)$ Binned difference of angular observable $P_4^\prime$ in $B^0\to K^{\ast 0}\mu^+\mu^-$ and $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<Dmue_P5p>(B0->K*ll) $\langle D_{P_5^\prime}^{\mu e} \rangle(B^0\to K^{\ast 0}\ell^+\ell^-)$ Binned difference of angular observable $P_5^\prime$ in $B^0\to K^{\ast 0}\mu^+\mu^-$ and $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<FL>(B0->K*ee) $\langle F_L\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned longitudinal polarization fraction in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<P1>(B0->K*ee) $\langle P_1\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<P2>(B0->K*ee) $\langle P_2\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<P3>(B0->K*ee) $\langle P_3\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<P4p>(B0->K*ee) $\langle P_4^\prime\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<P5p>(B0->K*ee) $\langle P_5^\prime\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<P6p>(B0->K*ee) $\langle P_6^\prime\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<P8p>(B0->K*ee) $\langle P_8^\prime\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<Rmue>(B0->K*ll) $\langle R_{\mu e} \rangle(B^0\to K^{\ast 0}\ell^+\ell^-)$ Ratio of partial branching ratios of $B^0\to K^{\ast 0}\mu^+ \mu^-$ and $B^0\to K^{\ast 0}e^+ e^-$ q2min, q2max
<S3>(B0->K*ee) $\langle S_3\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<S4>(B0->K*ee) $\langle S_4\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<S5>(B0->K*ee) $\langle S_5\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<S6c>(B0->K*ee) $\langle S_6^c\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<S7>(B0->K*ee) $\langle S_7\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<S8>(B0->K*ee) $\langle S_8\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<S9>(B0->K*ee) $\langle S_9\rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
<dBR/dq2>(B0->K*ee) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^0\to K^{\ast 0}e^+e^-)$ Binned differential branching ratio of $B^0\to K^{\ast 0}e^+e^-$ q2min, q2max
A3(B0->K*ee) $A_3(B^0\to K^{\ast 0}e^+e^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2
A4(B0->K*ee) $A_4(B^0\to K^{\ast 0}e^+e^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2
A5(B0->K*ee) $A_5(B^0\to K^{\ast 0}e^+e^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2
A6s(B0->K*ee) $A_6^s(B^0\to K^{\ast 0}e^+e^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2
A7(B0->K*ee) $A_7(B^0\to K^{\ast 0}e^+e^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2
A8(B0->K*ee) $A_8(B^0\to K^{\ast 0}e^+e^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2
A9(B0->K*ee) $A_9(B^0\to K^{\ast 0}e^+e^-)$ Angular CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2
ACP(B0->K*ee) $A_\text{CP}(B^0\to K^{\ast 0}e^+e^-)$ Direct CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2
AFB(B0->K*ee) $A_\text{FB}(B^0\to K^{\ast 0}e^+e^-)$ Forward-backward asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2
ATIm(B0->K*ee) $A_T^\text{Im}(B^0\to K^{\ast 0}e^+e^-)$ Transverse CP asymmetry in $B^0\to K^{\ast 0}e^+e^-$ q2
Dmue_AFB(B0->K*ll) $D_{A_\text{FB}}^{\mu e}(B^0\to K^{\ast 0}\ell^+\ell^-)$ Difference of angular observable $A_\text{FB}$ in $B^0\to K^{\ast 0}\mu^+\mu^-$ and $B^0\to K^{\ast 0}e^+e^-$ q2
Dmue_P4p(B0->K*ll) $D_{P_4^\prime}^{\mu e}(B^0\to K^{\ast 0}\ell^+\ell^-)$ Difference of angular observable $P_4^\prime$ in $B^0\to K^{\ast 0}\mu^+\mu^-$ and $B^0\to K^{\ast 0}e^+e^-$ q2
Dmue_P5p(B0->K*ll) $D_{P_5^\prime}^{\mu e}(B^0\to K^{\ast 0}\ell^+\ell^-)$ Difference of angular observable $P_5^\prime$ in $B^0\to K^{\ast 0}\mu^+\mu^-$ and $B^0\to K^{\ast 0}e^+e^-$ q2
FL(B0->K*ee) $F_L(B^0\to K^{\ast 0}e^+e^-)$ Longitudinal polarization fraction in $B^0\to K^{\ast 0}e^+e^-$ q2
P1(B0->K*ee) $P_1(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
P2(B0->K*ee) $P_2(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
P3(B0->K*ee) $P_3(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
P4p(B0->K*ee) $P_4^\prime(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
P5p(B0->K*ee) $P_5^\prime(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
P6p(B0->K*ee) $P_6^\prime(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
P8p(B0->K*ee) $P_8^\prime(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged “optimized” angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
Rmue(B0->K*ll) $R_{\mu e} (B^0\to K^{\ast 0}\ell^+\ell^-)$ Ratio of differential branching ratios of $B^0\to K^{\ast 0}\mu^+ \mu^-$ and $B^0\to K^{\ast 0}e^+ e^-$ q2
S3(B0->K*ee) $S_3(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
S4(B0->K*ee) $S_4(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
S5(B0->K*ee) $S_5(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
S6c(B0->K*ee) $S_6^c(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
S7(B0->K*ee) $S_7(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
S8(B0->K*ee) $S_8(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
S9(B0->K*ee) $S_9(B^0\to K^{\ast 0}e^+e^-)$ CP-averaged angular observable in $B^0\to K^{\ast 0}e^+e^-$ q2
dBR/dq2(B0->K*ee) $\frac{d\text{BR}}{dq^2}(B^0\to K^{\ast 0}e^+e^-)$ Differential branching ratio of $B^0\to K^{\ast 0}e^+e^-$ q2

$B_s\to K^* \mu^+\mu^-$

Name Symbol Description Arguments
<FL>(Bs->K*0mumu) $\langle \overline{F_L}\rangle(B_s\to K^* \mu^+\mu^-)$ Binned Time-averaged longitudinal polarization fraction in $B_s\to K^* \mu^+\mu^-$ q2min, q2max
<Rmue>(Bs->K*0ll) $\langle R_{\mu e} \rangle(B_s\to K^* \ell^+\ell^-)$ Ratio of partial branching ratios of $B_s\to K^* \mu^+ \mu^-$ and $B_s\to K^* e^+ e^-$ q2min, q2max
<Rtaumu>(Bs->K*0ll) $\langle R_{\tau \mu} \rangle(B_s\to K^* \ell^+\ell^-)$ Ratio of partial branching ratios of $B_s\to K^* \tau^+ \tau^-$ and $B_s\to K^* \mu^+ \mu^-$ q2min, q2max
<S3>(Bs->K*0mumu) $\langle \overline{S_3}\rangle(B_s\to K^* \mu^+\mu^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to K^* \mu^+\mu^-$ q2min, q2max
<S4>(Bs->K*0mumu) $\langle \overline{S_4}\rangle(B_s\to K^* \mu^+\mu^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to K^* \mu^+\mu^-$ q2min, q2max
<S7>(Bs->K*0mumu) $\langle \overline{S_7}\rangle(B_s\to K^* \mu^+\mu^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to K^* \mu^+\mu^-$ q2min, q2max
<dBR/dq2>(Bs->K*0mumu) $\langle \frac{d\overline{\text{BR}}}{dq^2} \rangle(B_s\to K^* \mu^+\mu^-)$ Binned time-integrated differential branching ratio of $B_s\to K^* \mu^+\mu^-$ q2min, q2max
BR_LHCb(Bs->K*0mumu) $\overline{\text{BR}}(B_s\to K^* \mu^+\mu^-)$ Branching ratio of $B_s\to K^* \mu^+\mu^-$ measured by LHCb in 2018  
FL(Bs->K*0mumu) $\overline{F_L}(B_s\to K^* \mu^+\mu^-)$ Time-averaged longitudinal polarization fraction in $B_s\to K^* \mu^+\mu^-$ q2
S3(Bs->K*0mumu) $\overline{S_3}(B_s\to K^* \mu^+\mu^-)$ Time-averaged, CP-averaged angular observable in $B_s\to K^* \mu^+\mu^-$ q2
S4(Bs->K*0mumu) $\overline{S_4}(B_s\to K^* \mu^+\mu^-)$ Time-averaged, CP-averaged angular observable in $B_s\to K^* \mu^+\mu^-$ q2
S7(Bs->K*0mumu) $\overline{S_7}(B_s\to K^* \mu^+\mu^-)$ Time-averaged, CP-averaged angular observable in $B_s\to K^* \mu^+\mu^-$ q2
dBR/dq2(Bs->K*0mumu) $\frac{d\overline{\text{BR}}}{dq^2}(B_s\to K^* \mu^+\mu^-)$ Differential time-integrated branching ratio of $B_s\to K^* \mu^+\mu^-$ q2

$B_s\to K^* \tau^+\tau^-$

Name Symbol Description Arguments
<FL>(Bs->K*0tautau) $\langle \overline{F_L}\rangle(B_s\to K^* \tau^+\tau^-)$ Binned Time-averaged longitudinal polarization fraction in $B_s\to K^* \tau^+\tau^-$ q2min, q2max
<Rtaumu>(Bs->K*0ll) $\langle R_{\tau \mu} \rangle(B_s\to K^* \ell^+\ell^-)$ Ratio of partial branching ratios of $B_s\to K^* \tau^+ \tau^-$ and $B_s\to K^* \mu^+ \mu^-$ q2min, q2max
<S3>(Bs->K*0tautau) $\langle \overline{S_3}\rangle(B_s\to K^* \tau^+\tau^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to K^* \tau^+\tau^-$ q2min, q2max
<S4>(Bs->K*0tautau) $\langle \overline{S_4}\rangle(B_s\to K^* \tau^+\tau^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to K^* \tau^+\tau^-$ q2min, q2max
<S7>(Bs->K*0tautau) $\langle \overline{S_7}\rangle(B_s\to K^* \tau^+\tau^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to K^* \tau^+\tau^-$ q2min, q2max
<dBR/dq2>(Bs->K*0tautau) $\langle \frac{d\overline{\text{BR}}}{dq^2} \rangle(B_s\to K^* \tau^+\tau^-)$ Binned time-integrated differential branching ratio of $B_s\to K^* \tau^+\tau^-$ q2min, q2max
FL(Bs->K*0tautau) $\overline{F_L}(B_s\to K^* \tau^+\tau^-)$ Time-averaged longitudinal polarization fraction in $B_s\to K^* \tau^+\tau^-$ q2
S3(Bs->K*0tautau) $\overline{S_3}(B_s\to K^* \tau^+\tau^-)$ Time-averaged, CP-averaged angular observable in $B_s\to K^* \tau^+\tau^-$ q2
S4(Bs->K*0tautau) $\overline{S_4}(B_s\to K^* \tau^+\tau^-)$ Time-averaged, CP-averaged angular observable in $B_s\to K^* \tau^+\tau^-$ q2
S7(Bs->K*0tautau) $\overline{S_7}(B_s\to K^* \tau^+\tau^-)$ Time-averaged, CP-averaged angular observable in $B_s\to K^* \tau^+\tau^-$ q2
dBR/dq2(Bs->K*0tautau) $\frac{d\overline{\text{BR}}}{dq^2}(B_s\to K^* \tau^+\tau^-)$ Differential time-integrated branching ratio of $B_s\to K^* \tau^+\tau^-$ q2

$B_s\to K^* e^+e^-$

Name Symbol Description Arguments
<FL>(Bs->K*0ee) $\langle \overline{F_L}\rangle(B_s\to K^* e^+e^-)$ Binned Time-averaged longitudinal polarization fraction in $B_s\to K^* e^+e^-$ q2min, q2max
<Rmue>(Bs->K*0ll) $\langle R_{\mu e} \rangle(B_s\to K^* \ell^+\ell^-)$ Ratio of partial branching ratios of $B_s\to K^* \mu^+ \mu^-$ and $B_s\to K^* e^+ e^-$ q2min, q2max
<S3>(Bs->K*0ee) $\langle \overline{S_3}\rangle(B_s\to K^* e^+e^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to K^* e^+e^-$ q2min, q2max
<S4>(Bs->K*0ee) $\langle \overline{S_4}\rangle(B_s\to K^* e^+e^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to K^* e^+e^-$ q2min, q2max
<S7>(Bs->K*0ee) $\langle \overline{S_7}\rangle(B_s\to K^* e^+e^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to K^* e^+e^-$ q2min, q2max
<dBR/dq2>(Bs->K*0ee) $\langle \frac{d\overline{\text{BR}}}{dq^2} \rangle(B_s\to K^* e^+e^-)$ Binned time-integrated differential branching ratio of $B_s\to K^* e^+e^-$ q2min, q2max
FL(Bs->K*0ee) $\overline{F_L}(B_s\to K^* e^+e^-)$ Time-averaged longitudinal polarization fraction in $B_s\to K^* e^+e^-$ q2
S3(Bs->K*0ee) $\overline{S_3}(B_s\to K^* e^+e^-)$ Time-averaged, CP-averaged angular observable in $B_s\to K^* e^+e^-$ q2
S4(Bs->K*0ee) $\overline{S_4}(B_s\to K^* e^+e^-)$ Time-averaged, CP-averaged angular observable in $B_s\to K^* e^+e^-$ q2
S7(Bs->K*0ee) $\overline{S_7}(B_s\to K^* e^+e^-)$ Time-averaged, CP-averaged angular observable in $B_s\to K^* e^+e^-$ q2
dBR/dq2(Bs->K*0ee) $\frac{d\overline{\text{BR}}}{dq^2}(B_s\to K^* e^+e^-)$ Differential time-integrated branching ratio of $B_s\to K^* e^+e^-$ q2

$B_s\to \phi \mu^+\mu^-$

Name Symbol Description Arguments
<FL>(Bs->phimumu) $\langle \overline{F_L}\rangle(B_s\to \phi \mu^+\mu^-)$ Binned Time-averaged longitudinal polarization fraction in $B_s\to \phi \mu^+\mu^-$ q2min, q2max
<Rmue>(Bs->phill) $\langle R_{\mu e} \rangle(B_s\to \phi \ell^+\ell^-)$ Ratio of partial branching ratios of $B_s\to \phi \mu^+ \mu^-$ and $B_s\to \phi e^+ e^-$ q2min, q2max
<Rtaumu>(Bs->phill) $\langle R_{\tau \mu} \rangle(B_s\to \phi \ell^+\ell^-)$ Ratio of partial branching ratios of $B_s\to \phi \tau^+ \tau^-$ and $B_s\to \phi \mu^+ \mu^-$ q2min, q2max
<S3>(Bs->phimumu) $\langle \overline{S_3}\rangle(B_s\to \phi \mu^+\mu^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to \phi \mu^+\mu^-$ q2min, q2max
<S4>(Bs->phimumu) $\langle \overline{S_4}\rangle(B_s\to \phi \mu^+\mu^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to \phi \mu^+\mu^-$ q2min, q2max
<S7>(Bs->phimumu) $\langle \overline{S_7}\rangle(B_s\to \phi \mu^+\mu^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to \phi \mu^+\mu^-$ q2min, q2max
<dBR/dq2>(Bs->phimumu) $\langle \frac{d\overline{\text{BR}}}{dq^2} \rangle(B_s\to \phi \mu^+\mu^-)$ Binned time-integrated differential branching ratio of $B_s\to \phi \mu^+\mu^-$ q2min, q2max
FL(Bs->phimumu) $\overline{F_L}(B_s\to \phi \mu^+\mu^-)$ Time-averaged longitudinal polarization fraction in $B_s\to \phi \mu^+\mu^-$ q2
S3(Bs->phimumu) $\overline{S_3}(B_s\to \phi \mu^+\mu^-)$ Time-averaged, CP-averaged angular observable in $B_s\to \phi \mu^+\mu^-$ q2
S4(Bs->phimumu) $\overline{S_4}(B_s\to \phi \mu^+\mu^-)$ Time-averaged, CP-averaged angular observable in $B_s\to \phi \mu^+\mu^-$ q2
S7(Bs->phimumu) $\overline{S_7}(B_s\to \phi \mu^+\mu^-)$ Time-averaged, CP-averaged angular observable in $B_s\to \phi \mu^+\mu^-$ q2
dBR/dq2(Bs->phimumu) $\frac{d\overline{\text{BR}}}{dq^2}(B_s\to \phi \mu^+\mu^-)$ Differential time-integrated branching ratio of $B_s\to \phi \mu^+\mu^-$ q2

$B_s\to \phi \tau^+\tau^-$

Name Symbol Description Arguments
<FL>(Bs->phitautau) $\langle \overline{F_L}\rangle(B_s\to \phi \tau^+\tau^-)$ Binned Time-averaged longitudinal polarization fraction in $B_s\to \phi \tau^+\tau^-$ q2min, q2max
<Rtaumu>(Bs->phill) $\langle R_{\tau \mu} \rangle(B_s\to \phi \ell^+\ell^-)$ Ratio of partial branching ratios of $B_s\to \phi \tau^+ \tau^-$ and $B_s\to \phi \mu^+ \mu^-$ q2min, q2max
<S3>(Bs->phitautau) $\langle \overline{S_3}\rangle(B_s\to \phi \tau^+\tau^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to \phi \tau^+\tau^-$ q2min, q2max
<S4>(Bs->phitautau) $\langle \overline{S_4}\rangle(B_s\to \phi \tau^+\tau^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to \phi \tau^+\tau^-$ q2min, q2max
<S7>(Bs->phitautau) $\langle \overline{S_7}\rangle(B_s\to \phi \tau^+\tau^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to \phi \tau^+\tau^-$ q2min, q2max
<dBR/dq2>(Bs->phitautau) $\langle \frac{d\overline{\text{BR}}}{dq^2} \rangle(B_s\to \phi \tau^+\tau^-)$ Binned time-integrated differential branching ratio of $B_s\to \phi \tau^+\tau^-$ q2min, q2max
FL(Bs->phitautau) $\overline{F_L}(B_s\to \phi \tau^+\tau^-)$ Time-averaged longitudinal polarization fraction in $B_s\to \phi \tau^+\tau^-$ q2
S3(Bs->phitautau) $\overline{S_3}(B_s\to \phi \tau^+\tau^-)$ Time-averaged, CP-averaged angular observable in $B_s\to \phi \tau^+\tau^-$ q2
S4(Bs->phitautau) $\overline{S_4}(B_s\to \phi \tau^+\tau^-)$ Time-averaged, CP-averaged angular observable in $B_s\to \phi \tau^+\tau^-$ q2
S7(Bs->phitautau) $\overline{S_7}(B_s\to \phi \tau^+\tau^-)$ Time-averaged, CP-averaged angular observable in $B_s\to \phi \tau^+\tau^-$ q2
dBR/dq2(Bs->phitautau) $\frac{d\overline{\text{BR}}}{dq^2}(B_s\to \phi \tau^+\tau^-)$ Differential time-integrated branching ratio of $B_s\to \phi \tau^+\tau^-$ q2

$B_s\to \phi e^+e^-$

Name Symbol Description Arguments
<FL>(Bs->phiee) $\langle \overline{F_L}\rangle(B_s\to \phi e^+e^-)$ Binned Time-averaged longitudinal polarization fraction in $B_s\to \phi e^+e^-$ q2min, q2max
<Rmue>(Bs->phill) $\langle R_{\mu e} \rangle(B_s\to \phi \ell^+\ell^-)$ Ratio of partial branching ratios of $B_s\to \phi \mu^+ \mu^-$ and $B_s\to \phi e^+ e^-$ q2min, q2max
<S3>(Bs->phiee) $\langle \overline{S_3}\rangle(B_s\to \phi e^+e^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to \phi e^+e^-$ q2min, q2max
<S4>(Bs->phiee) $\langle \overline{S_4}\rangle(B_s\to \phi e^+e^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to \phi e^+e^-$ q2min, q2max
<S7>(Bs->phiee) $\langle \overline{S_7}\rangle(B_s\to \phi e^+e^-)$ Binned Time-averaged, CP-averaged angular observable in $B_s\to \phi e^+e^-$ q2min, q2max
<dBR/dq2>(Bs->phiee) $\langle \frac{d\overline{\text{BR}}}{dq^2} \rangle(B_s\to \phi e^+e^-)$ Binned time-integrated differential branching ratio of $B_s\to \phi e^+e^-$ q2min, q2max
FL(Bs->phiee) $\overline{F_L}(B_s\to \phi e^+e^-)$ Time-averaged longitudinal polarization fraction in $B_s\to \phi e^+e^-$ q2
S3(Bs->phiee) $\overline{S_3}(B_s\to \phi e^+e^-)$ Time-averaged, CP-averaged angular observable in $B_s\to \phi e^+e^-$ q2
S4(Bs->phiee) $\overline{S_4}(B_s\to \phi e^+e^-)$ Time-averaged, CP-averaged angular observable in $B_s\to \phi e^+e^-$ q2
S7(Bs->phiee) $\overline{S_7}(B_s\to \phi e^+e^-)$ Time-averaged, CP-averaged angular observable in $B_s\to \phi e^+e^-$ q2
dBR/dq2(Bs->phiee) $\frac{d\overline{\text{BR}}}{dq^2}(B_s\to \phi e^+e^-)$ Differential time-integrated branching ratio of $B_s\to \phi e^+e^-$ q2

$\bar B^0\to \bar K^{*0} \mu^+\tau^-$

Name Symbol Description Arguments
BR(B0->K*mutau) $\text{BR}(\bar B^0\to \bar K^{*0} \mu^+\tau^-)$ Total branching ratio of $\bar B^0\to \bar K^{*0} \mu^+\tau^-$  

$\bar B^0\to \bar K^{*0} \mu^+e^-$

Name Symbol Description Arguments
BR(B0->K*mue) $\text{BR}(\bar B^0\to \bar K^{*0} \mu^+e^-)$ Total branching ratio of $\bar B^0\to \bar K^{*0} \mu^+e^-$  

$\bar B^0\to \bar K^{*0} \tau^+\mu^-$

Name Symbol Description Arguments
BR(B0->K*taumu) $\text{BR}(\bar B^0\to \bar K^{*0} \tau^+\mu^-)$ Total branching ratio of $\bar B^0\to \bar K^{*0} \tau^+\mu^-$  

$\bar B^0\to \bar K^{*0} \tau^+e^-$

Name Symbol Description Arguments
BR(B0->K*taue) $\text{BR}(\bar B^0\to \bar K^{*0} \tau^+e^-)$ Total branching ratio of $\bar B^0\to \bar K^{*0} \tau^+e^-$  

$\bar B^0\to \bar K^{*0} e^+\mu^-$

Name Symbol Description Arguments
BR(B0->K*emu) $\text{BR}(\bar B^0\to \bar K^{*0} e^+\mu^-)$ Total branching ratio of $\bar B^0\to \bar K^{*0} e^+\mu^-$  

$\bar B^0\to \bar K^{*0} e^+\tau^-$

Name Symbol Description Arguments
BR(B0->K*etau) $\text{BR}(\bar B^0\to \bar K^{*0} e^+\tau^-)$ Total branching ratio of $\bar B^0\to \bar K^{*0} e^+\tau^-$  

$\bar B^0\to \rho^{0} \mu^+\tau^-$

Name Symbol Description Arguments
BR(B0->rhomutau) $\text{BR}(\bar B^0\to \rho^{0} \mu^+\tau^-)$ Total branching ratio of $\bar B^0\to \rho^{0} \mu^+\tau^-$  

$\bar B^0\to \rho^{0} \mu^+e^-$

Name Symbol Description Arguments
BR(B0->rhomue) $\text{BR}(\bar B^0\to \rho^{0} \mu^+e^-)$ Total branching ratio of $\bar B^0\to \rho^{0} \mu^+e^-$  

$\bar B^0\to \rho^{0} \tau^+\mu^-$

Name Symbol Description Arguments
BR(B0->rhotaumu) $\text{BR}(\bar B^0\to \rho^{0} \tau^+\mu^-)$ Total branching ratio of $\bar B^0\to \rho^{0} \tau^+\mu^-$  

$\bar B^0\to \rho^{0} \tau^+e^-$

Name Symbol Description Arguments
BR(B0->rhotaue) $\text{BR}(\bar B^0\to \rho^{0} \tau^+e^-)$ Total branching ratio of $\bar B^0\to \rho^{0} \tau^+e^-$  

$\bar B^0\to \rho^{0} e^+\mu^-$

Name Symbol Description Arguments
BR(B0->rhoemu) $\text{BR}(\bar B^0\to \rho^{0} e^+\mu^-)$ Total branching ratio of $\bar B^0\to \rho^{0} e^+\mu^-$  

$\bar B^0\to \rho^{0} e^+\tau^-$

Name Symbol Description Arguments
BR(B0->rhoetau) $\text{BR}(\bar B^0\to \rho^{0} e^+\tau^-)$ Total branching ratio of $\bar B^0\to \rho^{0} e^+\tau^-$  

$\bar B_s\to \phi \mu^+\tau^-$

Name Symbol Description Arguments
BR(Bs->phimutau) $\text{BR}(\bar B_s\to \phi \mu^+\tau^-)$ Total branching ratio of $\bar B_s\to \phi \mu^+\tau^-$  

$\bar B_s\to \phi \mu^+e^-$

Name Symbol Description Arguments
BR(Bs->phimue) $\text{BR}(\bar B_s\to \phi \mu^+e^-)$ Total branching ratio of $\bar B_s\to \phi \mu^+e^-$  

$\bar B_s\to \phi \tau^+\mu^-$

Name Symbol Description Arguments
BR(Bs->phitaumu) $\text{BR}(\bar B_s\to \phi \tau^+\mu^-)$ Total branching ratio of $\bar B_s\to \phi \tau^+\mu^-$  

$\bar B_s\to \phi \tau^+e^-$

Name Symbol Description Arguments
BR(Bs->phitaue) $\text{BR}(\bar B_s\to \phi \tau^+e^-)$ Total branching ratio of $\bar B_s\to \phi \tau^+e^-$  

$\bar B_s\to \phi e^+\mu^-$

Name Symbol Description Arguments
BR(Bs->phiemu) $\text{BR}(\bar B_s\to \phi e^+\mu^-)$ Total branching ratio of $\bar B_s\to \phi e^+\mu^-$  

$\bar B_s\to \phi e^+\tau^-$

Name Symbol Description Arguments
BR(Bs->phietau) $\text{BR}(\bar B_s\to \phi e^+\tau^-)$ Total branching ratio of $\bar B_s\to \phi e^+\tau^-$  

$B\to V\gamma$

$B^+\to K^{*+}\gamma$

Name Symbol Description Arguments
ACP(B+->K*gamma) $A_{CP}(B^+\to K^{*+}\gamma)$ Direct CP asymmetry of $B^+\to K^{*+}\gamma$  
BR(B+->K*gamma) $\text{BR}(B^+\to K^{*+}\gamma)$ Branching ratio of $B^+\to K^{*+}\gamma$  

$B^0\to K^{*0}\gamma$

Name Symbol Description Arguments
ACP(B0->K*gamma) $A_{CP}(B^0\to K^{*0}\gamma)$ Direct CP asymmetry of $B^0\to K^{*0}\gamma$  
BR(B0->K*gamma) $\text{BR}(B^0\to K^{*0}\gamma)$ Branching ratio of $B^0\to K^{*0}\gamma$  
BR(B0->K*gamma)/BR(Bs->phigamma) $\frac{\text{BR}(B^0\to K^{*0}\gamma)}{\overline{\text{BR}}(B_s\to \phi\gamma)}$ Ratio of branching ratio of $B^0\to K^{*0}\gamma$ and time-integrated branching ratio of $B_s\to \phi\gamma$  
S_K*gamma $S_{K^{*}\gamma}$ Mixing-induced CP asymmetry in $B^0\to K^{*0}\gamma$  

$B_s\to \phi\gamma$

Name Symbol Description Arguments
ACP(Bs->phigamma) $A_{CP}(B_s\to \phi\gamma)$ Direct CP asymmetry of $B_s\to \phi\gamma$  
ADeltaGamma(Bs->phigamma) $A_{\Delta\Gamma}(B_s\to \phi\gamma)$ Mass-eigenstate rate asymmetry in $B_s\to \phi\gamma$  
BR(B0->K*gamma)/BR(Bs->phigamma) $\frac{\text{BR}(B^0\to K^{*0}\gamma)}{\overline{\text{BR}}(B_s\to \phi\gamma)}$ Ratio of branching ratio of $B^0\to K^{*0}\gamma$ and time-integrated branching ratio of $B_s\to \phi\gamma$  
BR(Bs->phigamma) $\overline{\text{BR}}(B_s\to \phi\gamma)$ Time-integrated branching ratio of $B_s\to \phi\gamma$  
S_phigamma $S_{\phi\gamma}$ Mixing-induced CP asymmetry in $B_s\to \phi\gamma$  

$B\to V\nu\bar\nu$

$B^+\to K^{*+}\nu\bar\nu$

Name Symbol Description Arguments
<FL>(B+->K*nunu) $\langle F_L \rangle(B^+\to K^{*+}\nu\bar\nu)$ Binned longitudinal polarization fraction of $B^+\to K^{*+}\nu\bar\nu$ q2min, q2max
<dBR/dq2>(B+->K*nunu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^+\to K^{*+}\nu\bar\nu)$ Binned differential branching ratio of $B^+\to K^{*+}\nu\bar\nu$ q2min, q2max
BR(B+->K*nunu) $\text{BR}(B^+\to K^{*+}\nu\bar\nu)$ Branching ratio of $B^+\to K^{*+}\nu\bar\nu$  
FL(B+->K*nunu) $F_L(B^+\to K^{*+}\nu\bar\nu)$ Differential longitudinal polarization fraction o f$B^+\to K^{*+}\nu\bar\nu$ q2
dBR/dq2(B+->K*nunu) $\frac{d\text{BR}}{dq^2}(B^+\to K^{*+}\nu\bar\nu)$ Differential branching ratio of $B^+\to K^{*+}\nu\bar\nu$ q2

$B^+\to \rho^{+}\nu\bar\nu$

Name Symbol Description Arguments
<dBR/dq2>(B+->rhonunu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^+\to \rho^{+}\nu\bar\nu)$ Binned differential branching ratio of $B^+\to \rho^{+}\nu\bar\nu$ q2min, q2max
BR(B+->rhonunu) $\text{BR}(B^+\to \rho^{+}\nu\bar\nu)$ Branching ratio of $B^+\to \rho^{+}\nu\bar\nu$  
dBR/dq2(B+->rhonunu) $\frac{d\text{BR}}{dq^2}(B^+\to \rho^{+}\nu\bar\nu)$ Differential branching ratio of $B^+\to \rho^{+}\nu\bar\nu$ q2

$B^0\to K^{*0}\nu\bar\nu$

Name Symbol Description Arguments
<FL>(B0->K*nunu) $\langle F_L \rangle(B^0\to K^{*0}\nu\bar\nu)$ Binned longitudinal polarization fraction of $B^0\to K^{*0}\nu\bar\nu$ q2min, q2max
<dBR/dq2>(B0->K*nunu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^0\to K^{*0}\nu\bar\nu)$ Binned differential branching ratio of $B^0\to K^{*0}\nu\bar\nu$ q2min, q2max
BR(B0->K*nunu) $\text{BR}(B^0\to K^{*0}\nu\bar\nu)$ Branching ratio of $B^0\to K^{*0}\nu\bar\nu$  
FL(B0->K*nunu) $F_L(B^0\to K^{*0}\nu\bar\nu)$ Differential longitudinal polarization fraction o f$B^0\to K^{*0}\nu\bar\nu$ q2
dBR/dq2(B0->K*nunu) $\frac{d\text{BR}}{dq^2}(B^0\to K^{*0}\nu\bar\nu)$ Differential branching ratio of $B^0\to K^{*0}\nu\bar\nu$ q2

$B^0\to \rho^{0}\nu\bar\nu$

Name Symbol Description Arguments
<dBR/dq2>(B0->rhonunu) $\langle \frac{d\text{BR}}{dq^2} \rangle(B^0\to \rho^{0}\nu\bar\nu)$ Binned differential branching ratio of $B^0\to \rho^{0}\nu\bar\nu$ q2min, q2max
BR(B0->rhonunu) $\text{BR}(B^0\to \rho^{0}\nu\bar\nu)$ Branching ratio of $B^0\to \rho^{0}\nu\bar\nu$  
dBR/dq2(B0->rhonunu) $\frac{d\text{BR}}{dq^2}(B^0\to \rho^{0}\nu\bar\nu)$ Differential branching ratio of $B^0\to \rho^{0}\nu\bar\nu$ q2

$B\to X\ell^+\ell^-$

$B\to X_d\ell^+\ell^-$

Name Symbol Description Arguments
<AFB>(B->Xdll) $\langle A_\text{FB} \rangle(B\to X_d\ell^+\ell^-)$ Binned normalized forward-backward asymmetry of $B\to X_d\ell^+\ell^-$ q2min, q2max
<BR>(B->Xdll) $\langle \text{BR} \rangle(B\to X_d\ell^+\ell^-)$ Binned branching ratio of $B\to X_d\ell^+\ell^-$ q2min, q2max
AFB(B->Xdll) $A_\text{FB}(B\to X_d\ell^+\ell^-)$ Normalized forward-backward asymmetry of $B\to X_d\ell^+\ell^-$ q2
dBR/dq2(B->Xdll) $\frac{d\text{BR}}{dq^2}(B\to X_d\ell^+\ell^-)$ Differential branching ratio of $B\to X_d\ell^+\ell^-$ q2

$B\to X_d\mu^+\mu^-$

Name Symbol Description Arguments
<AFB>(B->Xdmumu) $\langle A_\text{FB} \rangle(B\to X_d\mu^+\mu^-)$ Binned normalized forward-backward asymmetry of $B\to X_d\mu^+\mu^-$ q2min, q2max
<BR>(B->Xdmumu) $\langle \text{BR} \rangle(B\to X_d\mu^+\mu^-)$ Binned branching ratio of $B\to X_d\mu^+\mu^-$ q2min, q2max
<Rmue>(B->Xdll) $\langle R_{\mu e} \rangle(B\to X_d\ell^+\ell^-)$ Ratio of partial branching ratios of $B\to X_d\mu^+\mu^-$ and $B\to X_de^+e^-$ q2min, q2max
<Rtaumu>(B->Xdll) $\langle R_{\tau \mu} \rangle(B\to X_d\ell^+\ell^-)$ Ratio of partial branching ratios of $B\to X_d\tau^+\tau^-$ and $B\to X_d\mu^+\mu^-$ q2min, q2max
AFB(B->Xdmumu) $A_\text{FB}(B\to X_d\mu^+\mu^-)$ Normalized forward-backward asymmetry of $B\to X_d\mu^+\mu^-$ q2
dBR/dq2(B->Xdmumu) $\frac{d\text{BR}}{dq^2}(B\to X_d\mu^+\mu^-)$ Differential branching ratio of $B\to X_d\mu^+\mu^-$ q2

$B\to X_d\tau^+\tau^-$

Name Symbol Description Arguments
<BR>(B->Xdtautau) $\langle \text{BR} \rangle(B\to X_d\tau^+\tau^-)$ Binned branching ratio of $B\to X_d\tau^+\tau^-$ q2min, q2max
<Rtaumu>(B->Xdll) $\langle R_{\tau \mu} \rangle(B\to X_d\ell^+\ell^-)$ Ratio of partial branching ratios of $B\to X_d\tau^+\tau^-$ and $B\to X_d\mu^+\mu^-$ q2min, q2max
dBR/dq2(B->Xdtautau) $\frac{d\text{BR}}{dq^2}(B\to X_d\tau^+\tau^-)$ Differential branching ratio of $B\to X_d\tau^+\tau^-$ q2

$B\to X_de^+e^-$

Name Symbol Description Arguments
<AFB>(B->Xdee) $\langle A_\text{FB} \rangle(B\to X_de^+e^-)$ Binned normalized forward-backward asymmetry of $B\to X_de^+e^-$ q2min, q2max
<BR>(B->Xdee) $\langle \text{BR} \rangle(B\to X_de^+e^-)$ Binned branching ratio of $B\to X_de^+e^-$ q2min, q2max
<Rmue>(B->Xdll) $\langle R_{\mu e} \rangle(B\to X_d\ell^+\ell^-)$ Ratio of partial branching ratios of $B\to X_d\mu^+\mu^-$ and $B\to X_de^+e^-$ q2min, q2max
AFB(B->Xdee) $A_\text{FB}(B\to X_de^+e^-)$ Normalized forward-backward asymmetry of $B\to X_de^+e^-$ q2
dBR/dq2(B->Xdee) $\frac{d\text{BR}}{dq^2}(B\to X_de^+e^-)$ Differential branching ratio of $B\to X_de^+e^-$ q2

$B\to X_s\ell^+\ell^-$

Name Symbol Description Arguments
<AFB>(B->Xsll) $\langle A_\text{FB} \rangle(B\to X_s\ell^+\ell^-)$ Binned normalized forward-backward asymmetry of $B\to X_s\ell^+\ell^-$ q2min, q2max
<BR>(B->Xsll) $\langle \text{BR} \rangle(B\to X_s\ell^+\ell^-)$ Binned branching ratio of $B\to X_s\ell^+\ell^-$ q2min, q2max
AFB(B->Xsll) $A_\text{FB}(B\to X_s\ell^+\ell^-)$ Normalized forward-backward asymmetry of $B\to X_s\ell^+\ell^-$ q2
dBR/dq2(B->Xsll) $\frac{d\text{BR}}{dq^2}(B\to X_s\ell^+\ell^-)$ Differential branching ratio of $B\to X_s\ell^+\ell^-$ q2

$B\to X_s\mu^+\mu^-$

Name Symbol Description Arguments
<AFB>(B->Xsmumu) $\langle A_\text{FB} \rangle(B\to X_s\mu^+\mu^-)$ Binned normalized forward-backward asymmetry of $B\to X_s\mu^+\mu^-$ q2min, q2max
<BR>(B->Xsmumu) $\langle \text{BR} \rangle(B\to X_s\mu^+\mu^-)$ Binned branching ratio of $B\to X_s\mu^+\mu^-$ q2min, q2max
<Rmue>(B->Xsll) $\langle R_{\mu e} \rangle(B\to X_s\ell^+\ell^-)$ Ratio of partial branching ratios of $B\to X_s\mu^+\mu^-$ and $B\to X_se^+e^-$ q2min, q2max
<Rtaumu>(B->Xsll) $\langle R_{\tau \mu} \rangle(B\to X_s\ell^+\ell^-)$ Ratio of partial branching ratios of $B\to X_s\tau^+\tau^-$ and $B\to X_s\mu^+\mu^-$ q2min, q2max
AFB(B->Xsmumu) $A_\text{FB}(B\to X_s\mu^+\mu^-)$ Normalized forward-backward asymmetry of $B\to X_s\mu^+\mu^-$ q2
dBR/dq2(B->Xsmumu) $\frac{d\text{BR}}{dq^2}(B\to X_s\mu^+\mu^-)$ Differential branching ratio of $B\to X_s\mu^+\mu^-$ q2

$B\to X_s\tau^+\tau^-$

Name Symbol Description Arguments
<BR>(B->Xstautau) $\langle \text{BR} \rangle(B\to X_s\tau^+\tau^-)$ Binned branching ratio of $B\to X_s\tau^+\tau^-$ q2min, q2max
<Rtaumu>(B->Xsll) $\langle R_{\tau \mu} \rangle(B\to X_s\ell^+\ell^-)$ Ratio of partial branching ratios of $B\to X_s\tau^+\tau^-$ and $B\to X_s\mu^+\mu^-$ q2min, q2max
dBR/dq2(B->Xstautau) $\frac{d\text{BR}}{dq^2}(B\to X_s\tau^+\tau^-)$ Differential branching ratio of $B\to X_s\tau^+\tau^-$ q2

$B\to X_se^+e^-$

Name Symbol Description Arguments
<AFB>(B->Xsee) $\langle A_\text{FB} \rangle(B\to X_se^+e^-)$ Binned normalized forward-backward asymmetry of $B\to X_se^+e^-$ q2min, q2max
<BR>(B->Xsee) $\langle \text{BR} \rangle(B\to X_se^+e^-)$ Binned branching ratio of $B\to X_se^+e^-$ q2min, q2max
<Rmue>(B->Xsll) $\langle R_{\mu e} \rangle(B\to X_s\ell^+\ell^-)$ Ratio of partial branching ratios of $B\to X_s\mu^+\mu^-$ and $B\to X_se^+e^-$ q2min, q2max
AFB(B->Xsee) $A_\text{FB}(B\to X_se^+e^-)$ Normalized forward-backward asymmetry of $B\to X_se^+e^-$ q2
dBR/dq2(B->Xsee) $\frac{d\text{BR}}{dq^2}(B\to X_se^+e^-)$ Differential branching ratio of $B\to X_se^+e^-$ q2

$B\to X\gamma$

$B\to X_d\gamma$

Name Symbol Description Arguments
BR(B->Xdgamma) $\text{BR}(B\to X_d\gamma)$ CP-averaged branching ratio of $B\to X_d\gamma$ for $E_\gamma>1.6$ GeV  

$B\to X_s\gamma$

Name Symbol Description Arguments
BR(B->Xsgamma) $\text{BR}(B\to X_s\gamma)$ CP-averaged branching ratio of $B\to X_s\gamma$ for $E_\gamma>1.6$ GeV  

$B\to X_{s+d}\gamma$

Name Symbol Description Arguments
ACP(B->Xgamma) $A_\text{CP}(B\to X_{s+d}\gamma)$ Direct CP asymmetry in $B\to X_{s+d}\gamma$ for $E_\gamma>1.6$ GeV  

$B\to \ell^+\ell^-\gamma$

$\bar B^0\to\mu^+\mu^-\gamma$

Name Symbol Description Arguments
<dBR/dq2>(B0->mumugamma) $\langle \frac{d\text{BR}}{dq^2} \rangle(\bar B^0\to\mu^+\mu^-\gamma)$ Binned differential branching ratio of $\bar B^0\to\mu^+\mu^-\gamma$ q2min, q2max
dBR/dq2(B0->mumugamma) $\frac{d\text{BR}}{dq^2}(\bar B^0\to\mu^+\mu^-\gamma)$ Differential branching ratio of $\bar B^0\to\mu^+\mu^-\gamma$ q2

$\bar B^0\toe^+e^-\gamma$

Name Symbol Description Arguments
<dBR/dq2>(B0->eegamma) $\langle \frac{d\text{BR}}{dq^2} \rangle(\bar B^0\toe^+e^-\gamma)$ Binned differential branching ratio of $\bar B^0\toe^+e^-\gamma$ q2min, q2max
dBR/dq2(B0->eegamma) $\frac{d\text{BR}}{dq^2}(\bar B^0\toe^+e^-\gamma)$ Differential branching ratio of $\bar B^0\toe^+e^-\gamma$ q2

$\bar B_s\to\mu^+\mu^-\gamma$

Name Symbol Description Arguments
<dBR/dq2>(Bs->mumugamma) $\langle \frac{d\text{BR}}{dq^2} \rangle(\bar B_s\to\mu^+\mu^-\gamma)$ Binned differential branching ratio of $\bar B_s\to\mu^+\mu^-\gamma$ q2min, q2max
dBR/dq2(Bs->mumugamma) $\frac{d\text{BR}}{dq^2}(\bar B_s\to\mu^+\mu^-\gamma)$ Differential branching ratio of $\bar B_s\to\mu^+\mu^-\gamma$ q2

$\bar B_s\toe^+e^-\gamma$

Name Symbol Description Arguments
<dBR/dq2>(Bs->eegamma) $\langle \frac{d\text{BR}}{dq^2} \rangle(\bar B_s\toe^+e^-\gamma)$ Binned differential branching ratio of $\bar B_s\toe^+e^-\gamma$ q2min, q2max
dBR/dq2(Bs->eegamma) $\frac{d\text{BR}}{dq^2}(\bar B_s\toe^+e^-\gamma)$ Differential branching ratio of $\bar B_s\toe^+e^-\gamma$ q2

$B\to\ell^+\ell^-$

$B^0\to \mu^+\mu^-$

Name Symbol Description Arguments
BR(B0->mumu) $\text{BR}(B^0\to \mu^+\mu^-)$ Branching ratio of $B^0\to \mu^+\mu^-$  

$B^0\to \tau^+\tau^-$

Name Symbol Description Arguments
BR(B0->tautau) $\text{BR}(B^0\to \tau^+\tau^-)$ Branching ratio of $B^0\to \tau^+\tau^-$  

$B^0\to e^+e^-$

Name Symbol Description Arguments
BR(B0->ee) $\text{BR}(B^0\to e^+e^-)$ Branching ratio of $B^0\to e^+e^-$  

$B_s\to \mu^+\mu^-$

Name Symbol Description Arguments
ADeltaGamma(Bs->mumu) $A_{\Delta\Gamma}(B_s\to \mu^+\mu^-)$ Mass-eigenstate rate asymmetry in $B_s\to \mu^+\mu^-$.  
BR(Bs->mumu) $\overline{\text{BR}}(B_s\to \mu^+\mu^-)$ Time-integrated branching ratio of $B_s\to \mu^+\mu^-$.  
tau_mumu $\tau_{B_s \to \mu\mu}$ Effective lifetime for $B_s\to \mu^+\mu^-$.  

$B_s\to \tau^+\tau^-$

Name Symbol Description Arguments
ADeltaGamma(Bs->tautau) $A_{\Delta\Gamma}(B_s\to \tau^+\tau^-)$ Mass-eigenstate rate asymmetry in $B_s\to \tau^+\tau^-$.  
BR(Bs->tautau) $\overline{\text{BR}}(B_s\to \tau^+\tau^-)$ Time-integrated branching ratio of $B_s\to \tau^+\tau^-$.  
tau_tautau $\tau_{B_s \to \tau\tau}$ Effective lifetime for $B_s\to \tau^+\tau^-$.  

$B_s\to e^+e^-$

Name Symbol Description Arguments
ADeltaGamma(Bs->ee) $A_{\Delta\Gamma}(B_s\to e^+e^-)$ Mass-eigenstate rate asymmetry in $B_s\to e^+e^-$.  
BR(Bs->ee) $\overline{\text{BR}}(B_s\to e^+e^-)$ Time-integrated branching ratio of $B_s\to e^+e^-$.  
tau_ee $\tau_{B_s \to ee}$ Effective lifetime for $B_s\to e^+e^-$.  

$\bar B^0\to \mu^+\tau^-$

Name Symbol Description Arguments
BR(B0->mutau) $\text{BR}(\bar B^0\to \mu^+\tau^-)$ Branching ratio of $\bar B^0\to \mu^+\tau^-$  
BR(B0->mutau,taumu) $\text{BR}(\bar B^0\to \mu^\pm \tau^\mp)$ Branching ratio of $\bar B^0\to \mu^\pm \tau^\mp$  

$\bar B^0\to \mu^+e^-$

Name Symbol Description Arguments
BR(B0->mue) $\text{BR}(\bar B^0\to \mu^+e^-)$ Branching ratio of $\bar B^0\to \mu^+e^-$  

$\bar B^0\to \tau^+\mu^-$

Name Symbol Description Arguments
BR(B0->taumu) $\text{BR}(\bar B^0\to \tau^+\mu^-)$ Branching ratio of $\bar B^0\to \tau^+\mu^-$  

$\bar B^0\to \tau^+e^-$

Name Symbol Description Arguments
BR(B0->taue) $\text{BR}(\bar B^0\to \tau^+e^-)$ Branching ratio of $\bar B^0\to \tau^+e^-$  

$\bar B^0\to e^+\mu^-$

Name Symbol Description Arguments
BR(B0->emu) $\text{BR}(\bar B^0\to e^+\mu^-)$ Branching ratio of $\bar B^0\to e^+\mu^-$  
BR(B0->emu,mue) $\text{BR}(\bar B^0\to e^\pm \mu^\mp)$ Branching ratio of $\bar B^0\to e^\pm \mu^\mp$  

$\bar B^0\to e^+\tau^-$

Name Symbol Description Arguments
BR(B0->etau) $\text{BR}(\bar B^0\to e^+\tau^-)$ Branching ratio of $\bar B^0\to e^+\tau^-$  
BR(B0->etau,taue) $\text{BR}(\bar B^0\to e^\pm \tau^\mp)$ Branching ratio of $\bar B^0\to e^\pm \tau^\mp$  

$\bar B_s\to \mu^+\tau^-$

Name Symbol Description Arguments
BR(Bs->mutau) $\text{BR}(\bar B_s\to \mu^+\tau^-)$ Branching ratio of $\bar B_s\to \mu^+\tau^-$  
BR(Bs->mutau,taumu) $\text{BR}(\bar B_s\to \mu^\pm \tau^\mp)$ Branching ratio of $\bar B_s\to \mu^\pm \tau^\mp$  

$\bar B_s\to \mu^+e^-$

Name Symbol Description Arguments
BR(Bs->mue) $\text{BR}(\bar B_s\to \mu^+e^-)$ Branching ratio of $\bar B_s\to \mu^+e^-$  

$\bar B_s\to \tau^+\mu^-$

Name Symbol Description Arguments
BR(Bs->taumu) $\text{BR}(\bar B_s\to \tau^+\mu^-)$ Branching ratio of $\bar B_s\to \tau^+\mu^-$  

$\bar B_s\to \tau^+e^-$

Name Symbol Description Arguments
BR(Bs->taue) $\text{BR}(\bar B_s\to \tau^+e^-)$ Branching ratio of $\bar B_s\to \tau^+e^-$  

$\bar B_s\to e^+\mu^-$

Name Symbol Description Arguments
BR(Bs->emu) $\text{BR}(\bar B_s\to e^+\mu^-)$ Branching ratio of $\bar B_s\to e^+\mu^-$  
BR(Bs->emu,mue) $\text{BR}(\bar B_s\to e^\pm \mu^\mp)$ Branching ratio of $\bar B_s\to e^\pm \mu^\mp$  

$\bar B_s\to e^+\tau^-$

Name Symbol Description Arguments
BR(Bs->etau) $\text{BR}(\bar B_s\to e^+\tau^-)$ Branching ratio of $\bar B_s\to e^+\tau^-$  
BR(Bs->etau,taue) $\text{BR}(\bar B_s\to e^\pm \tau^\mp)$ Branching ratio of $\bar B_s\to e^\pm \tau^\mp$  

$\Lambda_b\to \Lambda\ell^+\ell^-$

$\Lambda_b\to\Lambda \mu^+\mu^-$

Name Symbol Description Arguments
<AFBh>(Lambdab->Lambdamumu) $\langle A_\text{FB}^h\rangle(\Lambda_b\to\Lambda \mu^+\mu^-)$ Binned hadronic forward-backward asymmetry in $\Lambda_b\to\Lambda \mu^+\mu^-$ q2min, q2max
<AFBl>(Lambdab->Lambdamumu) $\langle A_\text{FB}^\ell\rangle(\Lambda_b\to\Lambda \mu^+\mu^-)$ Binned leptonic forward-backward asymmetry in $\Lambda_b\to\Lambda \mu^+\mu^-$ q2min, q2max
<AFBlh>(Lambdab->Lambdamumu) $\langle A_\text{FB}^{\ell h}\rangle(\Lambda_b\to\Lambda \mu^+\mu^-)$ Binned lepton-hadron forward-backward asymmetry in $\Lambda_b\to\Lambda \mu^+\mu^-$ q2min, q2max
<FL>(Lambdab->Lambdamumu) $\langle F_L\rangle(\Lambda_b\to\Lambda \mu^+\mu^-)$ Binned longitudinal polarization fraction in $\Lambda_b\to\Lambda \mu^+\mu^-$ q2min, q2max
<dBR/dq2>(Lambdab->Lambdamumu) $\langle \frac{d\text{BR}}{dq^2} \rangle(\Lambda_b\to\Lambda \mu^+\mu^-)$ Binned differential branching ratio of $\Lambda_b\to\Lambda \mu^+\mu^-$ q2min, q2max
AFBh(Lambdab->Lambdamumu) $A_\text{FB}^h(\Lambda_b\to\Lambda \mu^+\mu^-)$ Hadronic forward-backward asymmetry in $\Lambda_b\to\Lambda \mu^+\mu^-$ q2
AFBl(Lambdab->Lambdamumu) $A_\text{FB}^\ell(\Lambda_b\to\Lambda \mu^+\mu^-)$ Leptonic forward-backward asymmetry in $\Lambda_b\to\Lambda \mu^+\mu^-$ q2
AFBlh(Lambdab->Lambdamumu) $A_\text{FB}^{\ell h}(\Lambda_b\to\Lambda \mu^+\mu^-)$ Lepton-hadron forward-backward asymmetry in $\Lambda_b\to\Lambda \mu^+\mu^-$ q2
FL(Lambdab->Lambdamumu) $F_L(\Lambda_b\to\Lambda \mu^+\mu^-)$ Longitudinal polarization fraction in $\Lambda_b\to\Lambda \mu^+\mu^-$ q2
dBR/dq2(Lambdab->Lambdamumu) $\frac{d\text{BR}}{dq^2}(\Lambda_b\to\Lambda \mu^+\mu^-)$ Differential branching ratio of $\Lambda_b\to\Lambda \mu^+\mu^-$ q2

$\Lambda_b\to\Lambda e^+e^-$

Name Symbol Description Arguments
<AFBh>(Lambdab->Lambdaee) $\langle A_\text{FB}^h\rangle(\Lambda_b\to\Lambda e^+e^-)$ Binned hadronic forward-backward asymmetry in $\Lambda_b\to\Lambda e^+e^-$ q2min, q2max
<AFBl>(Lambdab->Lambdaee) $\langle A_\text{FB}^\ell\rangle(\Lambda_b\to\Lambda e^+e^-)$ Binned leptonic forward-backward asymmetry in $\Lambda_b\to\Lambda e^+e^-$ q2min, q2max
<AFBlh>(Lambdab->Lambdaee) $\langle A_\text{FB}^{\ell h}\rangle(\Lambda_b\to\Lambda e^+e^-)$ Binned lepton-hadron forward-backward asymmetry in $\Lambda_b\to\Lambda e^+e^-$ q2min, q2max
<FL>(Lambdab->Lambdaee) $\langle F_L\rangle(\Lambda_b\to\Lambda e^+e^-)$ Binned longitudinal polarization fraction in $\Lambda_b\to\Lambda e^+e^-$ q2min, q2max
<dBR/dq2>(Lambdab->Lambdaee) $\langle \frac{d\text{BR}}{dq^2} \rangle(\Lambda_b\to\Lambda e^+e^-)$ Binned differential branching ratio of $\Lambda_b\to\Lambda e^+e^-$ q2min, q2max
AFBh(Lambdab->Lambdaee) $A_\text{FB}^h(\Lambda_b\to\Lambda e^+e^-)$ Hadronic forward-backward asymmetry in $\Lambda_b\to\Lambda e^+e^-$ q2
AFBl(Lambdab->Lambdaee) $A_\text{FB}^\ell(\Lambda_b\to\Lambda e^+e^-)$ Leptonic forward-backward asymmetry in $\Lambda_b\to\Lambda e^+e^-$ q2
AFBlh(Lambdab->Lambdaee) $A_\text{FB}^{\ell h}(\Lambda_b\to\Lambda e^+e^-)$ Lepton-hadron forward-backward asymmetry in $\Lambda_b\to\Lambda e^+e^-$ q2
FL(Lambdab->Lambdaee) $F_L(\Lambda_b\to\Lambda e^+e^-)$ Longitudinal polarization fraction in $\Lambda_b\to\Lambda e^+e^-$ q2
dBR/dq2(Lambdab->Lambdaee) $\frac{d\text{BR}}{dq^2}(\Lambda_b\to\Lambda e^+e^-)$ Differential branching ratio of $\Lambda_b\to\Lambda e^+e^-$ q2

$\Lambda_b\to\Lambda(1520)\ell^+\ell^-$

$\Lambda_b\to\Lambda(1520) \mu^+\mu^-$

Name Symbol Description Arguments
<AFBh>(Lambdab->Lambda(1520)mumu) $\langle A_\text{FB}^\ell\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned hadronic forward-backward asymmetry in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<AFBl>(Lambdab->Lambda(1520)mumu) $\langle A_\text{FB}^\ell\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned leptonic forward-backward asymmetry in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<AFBlh>(Lambdab->Lambda(1520)mumu) $\langle A_\text{FB}^{\ell h}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned lepton-hadron forward-backward asymmetry in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<A_1c>(Lambdab->Lambda(1520)mumu) $\langle A_{1c}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP asymmetry 1c in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<A_1cc>(Lambdab->Lambda(1520)mumu) $\langle A_{1cc}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP asymmetry 1cc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<A_1ss>(Lambdab->Lambda(1520)mumu) $\langle A_{1ss}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP asymmetry 1ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<A_2c>(Lambdab->Lambda(1520)mumu) $\langle A_{2c}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP asymmetry 2c in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<A_2cc>(Lambdab->Lambda(1520)mumu) $\langle A_{2cc}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP asymmetry 2cc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<A_2ss>(Lambdab->Lambda(1520)mumu) $\langle A_{2ss}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP asymmetry 2ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<A_3ss>(Lambdab->Lambda(1520)mumu) $\langle A_{3ss}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP asymmetry 3ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<A_4ss>(Lambdab->Lambda(1520)mumu) $\langle A_{4ss}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP asymmetry 4ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<A_5s>(Lambdab->Lambda(1520)mumu) $\langle A_{5s}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP asymmetry 5s in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<A_5sc>(Lambdab->Lambda(1520)mumu) $\langle A_{5sc}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP asymmetry 5sc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<A_6s>(Lambdab->Lambda(1520)mumu) $\langle A_{6s}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP asymmetry 6s in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<A_6sc>(Lambdab->Lambda(1520)mumu) $\langle A_{6sc}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP asymmetry 6sc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<FL>(Lambdab->Lambda(1520)mumu) $\langle F_L\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned longitudinal polarization fraction in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<S_1c>(Lambdab->Lambda(1520)mumu) $\langle S_{1c}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP symmetry 1c in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<S_1cc>(Lambdab->Lambda(1520)mumu) $\langle S_{1cc}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP symmetry 1cc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<S_1ss>(Lambdab->Lambda(1520)mumu) $\langle S_{1ss}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP symmetry 1ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<S_2c>(Lambdab->Lambda(1520)mumu) $\langle S_{2c}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP symmetry 2c in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<S_2cc>(Lambdab->Lambda(1520)mumu) $\langle S_{2cc}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP symmetry 2cc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<S_2ss>(Lambdab->Lambda(1520)mumu) $\langle S_{2ss}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP symmetry 2ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<S_3ss>(Lambdab->Lambda(1520)mumu) $\langle S_{3ss}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP symmetry 3ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<S_4ss>(Lambdab->Lambda(1520)mumu) $\langle S_{4ss}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP symmetry 4ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<S_5s>(Lambdab->Lambda(1520)mumu) $\langle S_{5s}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP symmetry 5s in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<S_5sc>(Lambdab->Lambda(1520)mumu) $\langle S_{5sc}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP symmetry 5sc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<S_6s>(Lambdab->Lambda(1520)mumu) $\langle S_{6s}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP symmetry 6s in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<S_6sc>(Lambdab->Lambda(1520)mumu) $\langle S_{6sc}\rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned CP symmetry 6sc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
<dBR/dq2>(Lambdab->Lambda(1520)mumu) $\langle \frac{d\text{BR}}{dq^2} \rangle(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Binned differential branching ratio of $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2min, q2max
AFBh(Lambdab->Lambda(1520)mumu) $A_\text{FB}^\ell(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Hadronic forward-backward asymmetry in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
AFBl(Lambdab->Lambda(1520)mumu) $A_\text{FB}^\ell(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Leptonic forward-backward asymmetry in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
AFBlh(Lambdab->Lambda(1520)mumu) $A_\text{FB}^{\ell h}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Lepton-hadron forward-backward asymmetry in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
A_1c(Lambdab->Lambda(1520)mumu) $A_{1c}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP asymmetry 1c in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
A_1cc(Lambdab->Lambda(1520)mumu) $A_{1cc}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP asymmetry 1cc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
A_1ss(Lambdab->Lambda(1520)mumu) $A_{1ss}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP asymmetry 1ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
A_2c(Lambdab->Lambda(1520)mumu) $A_{2c}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP asymmetry 2c in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
A_2cc(Lambdab->Lambda(1520)mumu) $A_{2cc}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP asymmetry 2cc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
A_2ss(Lambdab->Lambda(1520)mumu) $A_{2ss}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP asymmetry 2ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
A_3ss(Lambdab->Lambda(1520)mumu) $A_{3ss}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP asymmetry 3ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
A_4ss(Lambdab->Lambda(1520)mumu) $A_{4ss}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP asymmetry 4ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
A_5s(Lambdab->Lambda(1520)mumu) $A_{5s}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP asymmetry 5s in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
A_5sc(Lambdab->Lambda(1520)mumu) $A_{5sc}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP asymmetry 5sc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
A_6s(Lambdab->Lambda(1520)mumu) $A_{6s}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP asymmetry 6s in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
A_6sc(Lambdab->Lambda(1520)mumu) $A_{6sc}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP asymmetry 6sc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
FL(Lambdab->Lambda(1520)mumu) $F_L(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Longitudinal polarization fraction in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
S_1c(Lambdab->Lambda(1520)mumu) $S_{1c}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP symmetry 1c in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
S_1cc(Lambdab->Lambda(1520)mumu) $S_{1cc}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP symmetry 1cc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
S_1ss(Lambdab->Lambda(1520)mumu) $S_{1ss}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP symmetry 1ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
S_2c(Lambdab->Lambda(1520)mumu) $S_{2c}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP symmetry 2c in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
S_2cc(Lambdab->Lambda(1520)mumu) $S_{2cc}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP symmetry 2cc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
S_2ss(Lambdab->Lambda(1520)mumu) $S_{2ss}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP symmetry 2ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
S_3ss(Lambdab->Lambda(1520)mumu) $S_{3ss}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP symmetry 3ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
S_4ss(Lambdab->Lambda(1520)mumu) $S_{4ss}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP symmetry 4ss in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
S_5s(Lambdab->Lambda(1520)mumu) $S_{5s}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP symmetry 5s in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
S_5sc(Lambdab->Lambda(1520)mumu) $S_{5sc}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP symmetry 5sc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
S_6s(Lambdab->Lambda(1520)mumu) $S_{6s}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP symmetry 6s in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
S_6sc(Lambdab->Lambda(1520)mumu) $S_{6sc}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ CP symmetry 6sc in $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2
dBR/dq2(Lambdab->Lambda(1520)mumu) $\frac{d\text{BR}}{dq^2}(\Lambda_b\to\Lambda(1520) \mu^+\mu^-)$ Differential branching ratio of $\Lambda_b\to\Lambda(1520) \mu^+\mu^-$ q2

$\Lambda_b\to\Lambda(1520) e^+e^-$

Name Symbol Description Arguments
<AFBh>(Lambdab->Lambda(1520)ee) $\langle A_\text{FB}^\ell\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned hadronic forward-backward asymmetry in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<AFBl>(Lambdab->Lambda(1520)ee) $\langle A_\text{FB}^\ell\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned leptonic forward-backward asymmetry in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<AFBlh>(Lambdab->Lambda(1520)ee) $\langle A_\text{FB}^{\ell h}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned lepton-hadron forward-backward asymmetry in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<A_1c>(Lambdab->Lambda(1520)ee) $\langle A_{1c}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP asymmetry 1c in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<A_1cc>(Lambdab->Lambda(1520)ee) $\langle A_{1cc}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP asymmetry 1cc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<A_1ss>(Lambdab->Lambda(1520)ee) $\langle A_{1ss}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP asymmetry 1ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<A_2c>(Lambdab->Lambda(1520)ee) $\langle A_{2c}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP asymmetry 2c in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<A_2cc>(Lambdab->Lambda(1520)ee) $\langle A_{2cc}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP asymmetry 2cc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<A_2ss>(Lambdab->Lambda(1520)ee) $\langle A_{2ss}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP asymmetry 2ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<A_3ss>(Lambdab->Lambda(1520)ee) $\langle A_{3ss}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP asymmetry 3ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<A_4ss>(Lambdab->Lambda(1520)ee) $\langle A_{4ss}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP asymmetry 4ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<A_5s>(Lambdab->Lambda(1520)ee) $\langle A_{5s}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP asymmetry 5s in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<A_5sc>(Lambdab->Lambda(1520)ee) $\langle A_{5sc}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP asymmetry 5sc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<A_6s>(Lambdab->Lambda(1520)ee) $\langle A_{6s}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP asymmetry 6s in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<A_6sc>(Lambdab->Lambda(1520)ee) $\langle A_{6sc}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP asymmetry 6sc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<FL>(Lambdab->Lambda(1520)ee) $\langle F_L\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned longitudinal polarization fraction in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<S_1c>(Lambdab->Lambda(1520)ee) $\langle S_{1c}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP symmetry 1c in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<S_1cc>(Lambdab->Lambda(1520)ee) $\langle S_{1cc}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP symmetry 1cc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<S_1ss>(Lambdab->Lambda(1520)ee) $\langle S_{1ss}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP symmetry 1ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<S_2c>(Lambdab->Lambda(1520)ee) $\langle S_{2c}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP symmetry 2c in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<S_2cc>(Lambdab->Lambda(1520)ee) $\langle S_{2cc}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP symmetry 2cc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<S_2ss>(Lambdab->Lambda(1520)ee) $\langle S_{2ss}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP symmetry 2ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<S_3ss>(Lambdab->Lambda(1520)ee) $\langle S_{3ss}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP symmetry 3ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<S_4ss>(Lambdab->Lambda(1520)ee) $\langle S_{4ss}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP symmetry 4ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<S_5s>(Lambdab->Lambda(1520)ee) $\langle S_{5s}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP symmetry 5s in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<S_5sc>(Lambdab->Lambda(1520)ee) $\langle S_{5sc}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP symmetry 5sc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<S_6s>(Lambdab->Lambda(1520)ee) $\langle S_{6s}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP symmetry 6s in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<S_6sc>(Lambdab->Lambda(1520)ee) $\langle S_{6sc}\rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned CP symmetry 6sc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
<dBR/dq2>(Lambdab->Lambda(1520)ee) $\langle \frac{d\text{BR}}{dq^2} \rangle(\Lambda_b\to\Lambda(1520) e^+e^-)$ Binned differential branching ratio of $\Lambda_b\to\Lambda(1520) e^+e^-$ q2min, q2max
AFBh(Lambdab->Lambda(1520)ee) $A_\text{FB}^\ell(\Lambda_b\to\Lambda(1520) e^+e^-)$ Hadronic forward-backward asymmetry in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
AFBl(Lambdab->Lambda(1520)ee) $A_\text{FB}^\ell(\Lambda_b\to\Lambda(1520) e^+e^-)$ Leptonic forward-backward asymmetry in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
AFBlh(Lambdab->Lambda(1520)ee) $A_\text{FB}^{\ell h}(\Lambda_b\to\Lambda(1520) e^+e^-)$ Lepton-hadron forward-backward asymmetry in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
A_1c(Lambdab->Lambda(1520)ee) $A_{1c}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP asymmetry 1c in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
A_1cc(Lambdab->Lambda(1520)ee) $A_{1cc}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP asymmetry 1cc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
A_1ss(Lambdab->Lambda(1520)ee) $A_{1ss}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP asymmetry 1ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
A_2c(Lambdab->Lambda(1520)ee) $A_{2c}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP asymmetry 2c in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
A_2cc(Lambdab->Lambda(1520)ee) $A_{2cc}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP asymmetry 2cc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
A_2ss(Lambdab->Lambda(1520)ee) $A_{2ss}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP asymmetry 2ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
A_3ss(Lambdab->Lambda(1520)ee) $A_{3ss}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP asymmetry 3ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
A_4ss(Lambdab->Lambda(1520)ee) $A_{4ss}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP asymmetry 4ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
A_5s(Lambdab->Lambda(1520)ee) $A_{5s}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP asymmetry 5s in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
A_5sc(Lambdab->Lambda(1520)ee) $A_{5sc}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP asymmetry 5sc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
A_6s(Lambdab->Lambda(1520)ee) $A_{6s}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP asymmetry 6s in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
A_6sc(Lambdab->Lambda(1520)ee) $A_{6sc}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP asymmetry 6sc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
FL(Lambdab->Lambda(1520)ee) $F_L(\Lambda_b\to\Lambda(1520) e^+e^-)$ Longitudinal polarization fraction in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
S_1c(Lambdab->Lambda(1520)ee) $S_{1c}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP symmetry 1c in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
S_1cc(Lambdab->Lambda(1520)ee) $S_{1cc}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP symmetry 1cc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
S_1ss(Lambdab->Lambda(1520)ee) $S_{1ss}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP symmetry 1ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
S_2c(Lambdab->Lambda(1520)ee) $S_{2c}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP symmetry 2c in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
S_2cc(Lambdab->Lambda(1520)ee) $S_{2cc}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP symmetry 2cc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
S_2ss(Lambdab->Lambda(1520)ee) $S_{2ss}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP symmetry 2ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
S_3ss(Lambdab->Lambda(1520)ee) $S_{3ss}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP symmetry 3ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
S_4ss(Lambdab->Lambda(1520)ee) $S_{4ss}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP symmetry 4ss in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
S_5s(Lambdab->Lambda(1520)ee) $S_{5s}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP symmetry 5s in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
S_5sc(Lambdab->Lambda(1520)ee) $S_{5sc}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP symmetry 5sc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
S_6s(Lambdab->Lambda(1520)ee) $S_{6s}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP symmetry 6s in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
S_6sc(Lambdab->Lambda(1520)ee) $S_{6sc}(\Lambda_b\to\Lambda(1520) e^+e^-)$ CP symmetry 6sc in $\Lambda_b\to\Lambda(1520) e^+e^-$ q2
dBR/dq2(Lambdab->Lambda(1520)ee) $\frac{d\text{BR}}{dq^2}(\Lambda_b\to\Lambda(1520) e^+e^-)$ Differential branching ratio of $\Lambda_b\to\Lambda(1520) e^+e^-$ q2