Observables / quarkonium lepton decays / $P\to \ell^+\ell^-$

The tables below have been generated automatically from the observables currently implemented in flavio. The first column is the string name that must be used when calling functions such as flavio.sm_prediction. The last column lists the arguments the observable depends on (which can also be empty in case of a scalar observable).

$\eta_b(1S)\to\mu^+\tau^-$

Name Symbol Description Arguments
BR(eta_b(1S)->mutau) $\text{BR}(\eta_b(1S)\to\mu^+\tau^-)$ Branching ratio of $\eta_b(1S)\to\mu^+\tau^-$ CeGGij, CeGGji

$\eta_b(1S)\to\mu^+e^-$

Name Symbol Description Arguments
BR(eta_b(1S)->mue) $\text{BR}(\eta_b(1S)\to\mu^+e^-)$ Branching ratio of $\eta_b(1S)\to\mu^+e^-$ CeGGij, CeGGji

$\eta_b(1S)\to\mu^\pm\tau^\mp$

Name Symbol Description Arguments
BR(eta_b(1S)->mutau,taumu) $\text{BR}(\eta_b(1S)\to\mu^\pm\tau^\mp)$ Branching ratio of $\eta_b(1S)\to\mu^\pm\tau^\mp$ CeGGij, CeGGji
BR(eta_b(1S)->taumu,mutau) $\text{BR}(\eta_b(1S)\to\mu^\pm\tau^\mp)$ Branching ratio of $\eta_b(1S)\to\mu^\pm\tau^\mp$ CeGGij, CeGGji

$\eta_b(1S)\to\tau^+\mu^-$

Name Symbol Description Arguments
BR(eta_b(1S)->taumu) $\text{BR}(\eta_b(1S)\to\tau^+\mu^-)$ Branching ratio of $\eta_b(1S)\to\tau^+\mu^-$ CeGGij, CeGGji

$\eta_b(1S)\to\tau^+e^-$

Name Symbol Description Arguments
BR(eta_b(1S)->taue) $\text{BR}(\eta_b(1S)\to\tau^+e^-)$ Branching ratio of $\eta_b(1S)\to\tau^+e^-$ CeGGij, CeGGji

$\eta_b(1S)\toe^+\mu^-$

Name Symbol Description Arguments
BR(eta_b(1S)->emu) $\text{BR}(\eta_b(1S)\toe^+\mu^-)$ Branching ratio of $\eta_b(1S)\toe^+\mu^-$ CeGGij, CeGGji

$\eta_b(1S)\toe^+\tau^-$

Name Symbol Description Arguments
BR(eta_b(1S)->etau) $\text{BR}(\eta_b(1S)\toe^+\tau^-)$ Branching ratio of $\eta_b(1S)\toe^+\tau^-$ CeGGij, CeGGji

$\eta_c(1S)\to\mu^+\tau^-$

Name Symbol Description Arguments
BR(eta_c(1S)->mutau) $\text{BR}(\eta_c(1S)\to\mu^+\tau^-)$ Branching ratio of $\eta_c(1S)\to\mu^+\tau^-$ CeGGij, CeGGji

$\eta_c(1S)\to\mu^+e^-$

Name Symbol Description Arguments
BR(eta_c(1S)->mue) $\text{BR}(\eta_c(1S)\to\mu^+e^-)$ Branching ratio of $\eta_c(1S)\to\mu^+e^-$ CeGGij, CeGGji

$\eta_c(1S)\to\mu^\pm\tau^\mp$

Name Symbol Description Arguments
BR(eta_c(1S)->mutau,taumu) $\text{BR}(\eta_c(1S)\to\mu^\pm\tau^\mp)$ Branching ratio of $\eta_c(1S)\to\mu^\pm\tau^\mp$ CeGGij, CeGGji
BR(eta_c(1S)->taumu,mutau) $\text{BR}(\eta_c(1S)\to\mu^\pm\tau^\mp)$ Branching ratio of $\eta_c(1S)\to\mu^\pm\tau^\mp$ CeGGij, CeGGji

$\eta_c(1S)\to\tau^+\mu^-$

Name Symbol Description Arguments
BR(eta_c(1S)->taumu) $\text{BR}(\eta_c(1S)\to\tau^+\mu^-)$ Branching ratio of $\eta_c(1S)\to\tau^+\mu^-$ CeGGij, CeGGji

$\eta_c(1S)\to\tau^+e^-$

Name Symbol Description Arguments
BR(eta_c(1S)->taue) $\text{BR}(\eta_c(1S)\to\tau^+e^-)$ Branching ratio of $\eta_c(1S)\to\tau^+e^-$ CeGGij, CeGGji

$\eta_c(1S)\toe^+\mu^-$

Name Symbol Description Arguments
BR(eta_c(1S)->emu) $\text{BR}(\eta_c(1S)\toe^+\mu^-)$ Branching ratio of $\eta_c(1S)\toe^+\mu^-$ CeGGij, CeGGji

$\eta_c(1S)\toe^+\tau^-$

Name Symbol Description Arguments
BR(eta_c(1S)->etau) $\text{BR}(\eta_c(1S)\toe^+\tau^-)$ Branching ratio of $\eta_c(1S)\toe^+\tau^-$ CeGGij, CeGGji